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Preface

This text presents the basic information required for successful design of
modern logic systems. The information is presented in a form that should be
immediately applicable by practising engineers but that also forms the basis
of a comprehensive final-year university or polytechnic course. It will also
prove useful to postgraduates in disciplines relying on the application of
digital methods, for example, computer science, control engineering and
instrumentation.

Certain mathematical theorems relating to Boolean variables are excluded
for over-all clarity. The use of these theorems to simplify Boolean expressions
has, in large part, been superseded by mapping and tabular techniques.
Excessive treatment of the mathematical basis of some of the procedures
would tend to obscure the engineering concepts involved.

The theoretical material is illustrated with practical examples wherever
possible. The examples can be used for extending the reader’s knowledge
from the particular to the general, which, in many cases, appears to be a more
natural approach than the reverse. Wide use of references is made where this
is felt desirable, to free the text from detail not immediately relevant and to
provide a basis for further reading.

An important feature of the book is the consideration of logic design from
a human point of view. An attempt is made to relate the more formal design
techniques to the widely used intuitive or ‘cut-and-try’ approach. For
example, the problem of state assignment is simplified by considering only
those possibilities that fit in with a natural (or human) approach to the
problem. This consideration has repercussions in all phases of the design
procedure. One of the most important results lies in the increased under-
standing of the operations of the circuit by service personnel. Also, by requir-
ing the solution to look ‘natural’, the number of possibilities is greatly reduced
(sometimes to one), thereby reducing the amount of design time required.

The partitioning of one complex circuit into a number of smaller circuits
is also carefully considered. To date there is no automatic procedure for
doing this; instead, ad hoc solutions are generally used. Guidelines are laid
down for accomplishing this partitioning in this book. Again, ‘naturalness’
is the keynote of the partitioning procedure. A well-partitioned circuit should
be relatively simple to test and troubleshoot, which leads to enormous
practical advantages in the post-design career of the circuit.
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Particular attention is devoted to hazards, races and other phenomena
that, although not apparent from a superficial appraisal of a proposed design,
can lead to mal-operation. Careful attention to these points, together with the
information provided in the final chapter on practical implementation,
should lead to the production of reliable designs every time.

The authors would like to thank R. Coleman, Technical Director of Trend
Communications Ltd, for his assistance with chapter 6. They would also like
to thank Mrs S. Nelson for her accuracy and patience in typing the manu-
script.



Introduction

Digital systems are not new. The simple ‘on—off’ signalling techniques used
by nineteenth-century telegraphers are one example of an early application of
digital techniques. However, for many years development of the various
applications of digital principles continued virtually independently; construc-
tion of electromechanical telephone exchanges, for example, progressed quite
independently of the development of digital computing systems.

Two factors have influenced the present importance of digital-system
design as a discipline in its own right. One is the development of design
procedures—many of which are discussed in this book—that apply to all
digital systems regardless of their particular form of realisation or application.
The other is the availability of electronic logic devices in integrated-circuit
form, at a price that, a few years ago, would have been regarded as impossibly
low. This low price has enabled digital techniques to be used in systems where
previously such methods would have been regarded as quite uneconomic.

1.1 What are digital systems?

All methods of specifying quantities are either continuous or discrete. In the
former case, for example, the height of a column of liquid in a tube, all heights
are possible between zero and some maximum value limited by the length of
the tube. A scale might be used to measure the height of the liquid but the
liquid itself will move smoothly between the divisions on the scale and, if
measurement could be made sufficiently accurate, an infinity of possible
heights would be available. Discrete systems, for example, the mileometer
(odometer) used on motor cars, have a limited (although perhaps large)
number of possible readings or output values. It is normally impossible to
specify the distance travelled by the car to better than the nearest whole mile;
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if a ‘tenths’ digit is provided the resolution of the system is improved but the
distance can still be specified only to the nearest tenth of a mile.

In general all systems that fall into the discrete category can be regarded as
digital, although certain classes of digital system have a more restricted defini-
tion. In electrical terminology continuous systems, as opposed to digital ones,
are often referred to as analogue. This is because most, if not all, physical
variables (for example, temperature, pressure, voltage and current) are con-
tinuous quantities and it is often convenient to process a voltage or current
that is the analogue of some non-electrical quantity. This technique, analogue
computing, has been highly developed and is widely used in specialised
applications such as control-system simulation. Computers operating in a
discrete mode—digital computers—are used in a much wider range of
applications.

1.2 How are digital systems realised ?

Any system that can be constrained to have a finite number of levels can be
regarded as digital. For example, the discs carrying the figures in the mile-
ometer are constrained by mechanical means to have only ten allowed angular
positions, as opposed to complete freedom of rotation. The use of ten levels is
particularly convenient for systems requiring human involvement. In
engineering practice, however, the use of only two levels is particularly
attractive. The levels can be widely separated; this allows each level to be
severely degraded by deterioration or inadequacy of system components
before there is any danger of confusion between the two. For this reason most
digital systems operate in a two-level or ‘binary’ mode, with translation to (or
from) ten levels where human intervention is required.

The levels chosen are, very often, merely the presence, or absence, of some
physical quantity. In electrical terms this naturally suggests the presence or
absence of a voltage (or current); alternatively a circuit, represented by the
contacts of a switch or relay, might be ‘open’ or ‘closed’. Hydraulic and
pneumatic digital systems are widely used in the control of machinery; here
the two levels are represented by the presence or absence of the appropriate
pressurised fluid.

Each variable that is permitted to have one of only two possible values is a
binary digit (or bir). Digital-system design consists essentially of devising an
interconnection of processing elements that produces the desired relationship
between an input pattern of bits and the required output pattern. In sequential
systems, introduced in chapter 3, the output pattern depends not only on the
present input pattern but also on previous ones. In view of the use of only two
levels, the number of possibilities when acting on a given number of digits can
be unambiguously defined. Details are discussed in chapter 2. The basic
principles of design discussed in this book apply regardless of the physical
form that the binary variables take. However, purely electronic realisation is
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by far the most common and this book is written primarily from this point of
view. Electronic logic circuits are now normally, but not always, realised in
integrated-circuit form. Integrated circuits consist of the components re-
quired for realisation of a series of digital functions produced on a single ‘chip’
of silicon that is only a few millimetres square.

1.3 Binary representation of quantities

An appropriate code must be used if quantities are to be satisfactorily
represented over a wide range using binary digits. Although by no means the
only possibility, pure binary code is very widely used. In this code adjacent
digits are given values (or weights) that are related by a factor of two, starting
with 2° (=1), just as adjacent digits in decimal numbers are related by a factor
of ten. In the decimal system the magnitude of each digit must be specified
between zero and nine; in the binary system each digit can be only present
(one) or absent (zero). For example, 1101 represents

Ix224+1x2240x214+1x2°=8+44+0+1=13

By a similar process decimal fractions can be specified as a sum of binary frac-
tions. Note that, because it normally takes a finite time to convert a physical
quantity into binary digits, and these digits can change only at a finite rate,
digital quantities are discretised not only with respect to magnitude but also
with respect to time (that is, they are sampled).

Quantities that can be either positive or negative require an additional digit
to specify the sign. Although ‘sign-and-magnitude’ notation is occasionally
used, two’s complement notation is more common. In this, the magnitude of
a negative number is subtracted from 2" to form the complement, where # is
the number of digits in the magnitude part of the number. This approach
has the advantage that subtraction may be performed merely by adding the
complement of the number to be subtracted.

Although convenient from a processing point of view, pure binary code
leads to hardware complexities when a decimal input or display is required.
For this reason, systems in which decimal input or output facilities are a
significant part of the total system (for example, digital-voltmeters and pocket
calculators) often work in a binary-coded decimal (BCD) mode. In this,
numbers are represented in decades, but within the decades the ten levels are
specified by means of binary code. For example, 0001 0011 1001 represents
139. The price of easy conversion to and from decimal is that more digits are
required and some operations, particularly arithmetic, become more com-
plex. Codes having other weightings (for example, 1, 1, 2 and 5) have been
used to represent the ten levels within each decade. These are to be avoided
since true binary-coded decimal is widely used and any deviation from this
can result in incompatible pieces of equipment.
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1.4 Serial and parallel data

It is evident from the previous section that transmission of non-trivial numer-
ical information requires several digits. These digits can be transmitted
simultaneously (in parallel) or sequentially (serially). The former has the
advantage of speed but requires one transmission path for each digit. Serial
transmission requires only one path regardless of the number of digits but
restricts the speed of transmission by an amount that, for a given transmission
system, is proportional to the number of digits. Parallel transmission would
normally be used over short distances (perhaps within a system). For economy
over longer distances a serial method would normally be used. Parallel-to-
serial and serial-to-parallel conversion is readily achieved (see chapter 3).

1.5 Comparison of analogue and digital systems

It could be inferred easily from section 1.1 that analogue systems are poten-
tially more accurate than digital ones, which have a finite resolution. In
practice this is not the case; in all natural processes there is an inevitable
randomness, generally described as noise, which means that the infinitesimal
resolution that is theoretically possible can never be realised as a reliable
measurement. Quantities represented in digital form, however, can often be
interpreted with no loss of accuracy even in the presence of considerable
noise; but when the noise exceeds a certain threshold, errors can be very large.

These concepts can be illustrated by means of the elementary examples of
section 1.1. Unfavourable conditions such as poor visibility, vibration and an
unstable location for the observer would decrease the accuracy with which the
height of liquid in the tube could be measured. On the other hand the figures
on a series of dials, such as a mileometer, could be read without loss of
accuracy under such conditions. However, if the conditions were to become
particularly poor, a 6 (for example) could be mistaken for an 8 or a 9 and
relatively large errors would occur. '

Digital systems operating properly below the critical level of noise will
always provide the same results for a given series of inputs. This can give rise
to a false sense of confidence since errors due to sampling and discretisation
will always be present on the input data that the system processes.

In general, therefore, analogue systems are less precise than digital ones
but are often faster since they can operate at their maximum rate without the
need for sampling. Historically they have also been regarded as simpler and
cheaper. However, the development of complex digital integrated circuits has
swung the balance in favour of digital realisation for many applications.



Review of Combinational-
logic Techniques

2.1 Logic levels

Any logic device (or indeed, system) can be viewed as a processing unit.
Certain inputs are applied, and certain outputs then appear. These inputs and
outputs can take many different forms. For example, they can be voltages,
currents, pressure, light, etc., or a mixture of these variables. In the majority
of logic devices currently available, the inputs and outputs are voltages. For
definiteness, all inputs and outputs in the ensuing discussion will be assumed
to be voltages unless stated otherwise.

Having agreed to select voltages to represent inputs and outputs, the next
step is to specify how voltage waveforms should be used to convey informa-
tion. The information of concern is assumed to be a binary digit (bit), which
can have only one of two possible values. These values can have various
meanings. For example, true, false; on, off; one, zero; 1, 0 are some of the
meanings that have been attached to these two values. The voltage waveforms
necessary to distinguish between these values could, in principle, be chosen in
a great variety of ways. For example, two different sinusoidal frequencies
could be used, or two different phases of one frequency (with respect to some
reference phase) could be employed. Alternatively, a square wave and a tri-
angular wave could be used, or two rectangular waves with different mark-to-
space ratios. The use of two different d.c. levels could also be considered.

The last possibility is very attractive from the design point of view, since it
will probably result in a less complicated circuit than the other ideas mention-
ed. The use of d.c. levels can be related to the well-known switching properties
of transistors (which can be manufactured in integrated-circuit form). It is for
this reason that the two values of a bit are usually associated with d.c. levels,
and are referred to as the logic levels of the bit.

Strictly speaking, the association of a logic level with a d.c. level is not
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correct. The logic level in practice must cover a range of d.c. levels. It is
necessary to have a range in order to cope with the problems of noise pick-up,
varying power supply, ageing of components, etc. In transistor—transistor
logic, for example, inputs are allowed in the ranges —1.5 to 0.8V (logic level
zero) and 2.0 to 5.5 V (logic level one). The corresponding output ranges are 0
t0 0.4 Vand 2.4 to 5.0 V. It is seen that both input ranges are somewhat larger
than the corresponding output ranges. The minimum difference in ranges is
defined to be the worst-case noise margin for each logic level. For example,
logic level one has a worst-case noise margin 2.4 —2.0 V=400 mV. In this case
the same noise margin exists for logic level zero.

For both input and output ranges there exists a forbidden band of values.
If an input exists in this forbidden band, the output might be anywhere from 0
to 5V (which includes its forbidden band). Whatever voltage the output
assumes, this value could change dramatically if the original device were
replaced by another of the same type. For this reason, operation in the
forbidden bands is avoided in practice.

There are many textbooks that give detailed design information on logic
levels and noise immunity for various logic families. The reader is referred to
Motorola (1968, 1973) for more details.

2.2 Gates

The majority of the logic gates that are encountered in practice are of the
multiple-input/single-output type. Thus the gate can be considered as an
information-combining unit. It accepts several input bits of information and
then processes these bits to produce only one output bit. In a sense, informa-
tion is being destroyed (or entropy increased) in the gate. This entropy point
of view has been developed by Matheson (1971a, 1971b).

An important feature of electronic gates is that of unidirectional operation.
No matter what signals are impressed on a gate output, the input levels
normally remain unaffected. This situation is not true, for example, with relay
circuits. With these bilateral circuits, backward paths can occur, which might
give rise to incorrect operation.

The simplest way to describe the action of a gate is to prepare an input/
output table for the gate. Such a table is conventionally referred to as a truth
table. This table should show the resulting output for all possible input com-
binations. Inputs will be denoted by x4, x5, . .., x,, and the output by z. All
these variables are binary, and so can assume only the logic levels zero or one
as discussed previously.

Figure 2.1 Truth table and symbol for a two-input AND gate.
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As a first example the truth table of a two-input AND gate will be con-
sidered. This truth table is shown in figure 2.1, where logic level one is in-
dicated by 1, and logic level zero is indicated by 0. Note that all possible input
combinations are listed in the table. The symbol for this gate is also shown in
figure 2.1. The gate symbols used in this book are in accordance with MIL
STD 806 B. It is common practice for manufacturers to use this symbol set.
In appendix 1 a list of equivalences is given between these symbols and other
widely used equivalents.

The action of this gate can also be described algebraically, as follows

Z=X1X3
In this notation ‘multiplication’ indicates the AND operation. Letting x, and
x, assume definite values and referring to the truth table of figure 2.1, it is seen
that

i

—_—0 O
)
I
— o o0

which explains why the AND operator is represented by multiplication. It is
obvious that z=x;x,=x;x;, which shows that the AND operation is
commutative.

The action of the AND gate can be extended to the n inputs x;, x2, ..., X5
Then z=x;X; . .. X,, which indicates that z=1 only when all x;= L.

Figure 2.2 Truth table and symbol for a two-input OR gate.
The truth table and symbol for the two-input inclusive OR gate are shown
in figure 2.2. Algebraically this truth table is represented as
Z=X1+X3

where the plus sign indicates the OR operation. Again, letting x; and x;
assume definite values, the table shows that

0+0=0
0+1=1
1+0=1
1+1=1

which agrees with our notion of addition (except for the last line). This gate is
called inclusive OR because the last line gives z=1 for both x, =1 and x, =1.
The operation is again commutative, for z=x, +x, =x, +x;. There is
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another gate, the exclusive OR gate, which has the property z= 1 when either
but not both inputs are at one. This gate excludes or prevents the output
becoming one when the two inputs are simultaneously at one. The exclusive
OR operation is also commutative.

In the inclusive OR gate, let n inputs x;, X, ..., x, be applied. Then
z=X;+X,+" '+ x,, with the result that z is one whenever one or more of
the inputs are at one.

Some simple rules for the ‘addition’ and ‘multiplication’ of logic expressions
are now given. Recalling that 1 (or one) stands for ‘on’ and that 0 (or zero)
stands for ‘off’, it is readily seen that for some logic expression g, 1- g=g,
0-9=0,1+g=1,0+g=g. It also turns out that (e +f)g+h)=eg +eh+fg+
fh. as is the case for algebraic multiplication. With a combination of these
rules, various results can be obtained. For example, (x + g)(x +h)=xx + xh+
xg+gh=x+x(g+h)+gh=x(1+g+h)+gh=x-1+gh=x+gh. Rather than
develop a long list of such specialised formulae, it is quite often easier to
work directly with Karnaugh maps, as will be seen subsequently.

Returning to the discussion of gates, the simplest gate of all is the inverter
of figure 2.3. This gate can be represented by a circle or a triangle followed by

x{z
011 x——o—z
1]0

Figure 2.3  Truth table and symbol for an inverter gate.

a circle, and has the property of complementing (or loosely, ‘inverting’) the
input. The output is often indicated by X, where the bar indicates the com-
plement (or logical inverse) of x. The definition of a logical inverse is that
x+X=1. From the truth table, it is readily seen that xx=0 and (X)=x.

The first equation will be central to the Karnaugh map, which is discussed
in section 2.3. The last equation will prove to be extremely useful for logic-
circuit transformation. In words, this equation states that two (or any even
number, for that matter) inverters in series cancel each other out. Conversely,

it is possible to ‘grow’ two inverters on a connection wire without disturbing
the operation of a logic circuit.

The inverter can be combined with the AND- and OR-gate outputs to
create the NAND and NOR gates, respectively. The N indicates that the
output is negated (that is, inverted). The symbols and truth tables for these
gates are shown in figure 2.4. In this figure it is seen that if x; = x, both of these
gates reduce to inverters.

xn xe|z X xelz

o |1 o 0|1
0o 1|1 o 110
1 0|1 1 0|0
1 110 1 110

Figure 24 Symbols and truth table for two-input NAND and NOR gates.
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Inverters can also be added to the inputs of a gate. Consider what happens
when inverters are added to the inputs of the gates of figure 2.4. By referring
to the truth tables of this figure, it can be seen that the equivalences of figure
2.5 hold. For example, the inputs x; =0, x,=0 become inverted (X;=1,
%, = 1), which results in z=0 for both cases in figure 2.4. Other input combina-
tions can be checked in a similar manner. Whenever one of the symbols of
figure 2.5 appears in a logic circuit, it can be immediately replaced by its
equivalent, if desired.

SLY

Figure 2.5 Gate equivalences.

These results can be used to produce a number of equivalent circuits by
using a simple pictorial technique. The method is best illustrated by example.

Example 2.1

Find equivalent circuits for the NAND and NOR gates of figure 2.4.

Solution Double inverters are grown on each input lead. The equivalences
of figure 2.5 are then used. The process is shown pictorially in figure 2.6.

-3

QY

Figure 2.6 Pictorial solution for example 2.1.
Example 2.2

Extend the first equivalence of figure 2.5 to a four-input gate.

Solution The steps of figure 2.7 are used to develop the solution. In this

Figure 2.7 Pictorial solution for example 2.2.
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figure it is understood that, if an inverter is adjacent to a gate, it is formed
electronically within the gate itself. If the inverter is elsewhere on a connection
wire, it represents a separate electronic entity or, possibly, a hypothetical
inverter. This solution can be extended to any number of input leads. A
similar result can be obtained for the second equivalence of figure 2.5.

Example 2.3
Realise the function z=2x;x,%3 + x4x5 by using NAND gates.

Solution The first step is to draw a logic circuit (called a prototype circuit)
which corresponds directly to the algebraic equation for z. The prototype
circuit for this example is shown leftmost in figure 2.8. The next step is to grow

X
X2

X3
Xq
X5
Figure 2.8  Equivalent-circuit solutions for example 2.3.

double inverters in such a way that all the gates become NAND gates. From
example 2.1t was found that a NAND gate can be formed either by adding an
inverter to the output of an AND gate, or by adding inverters to the inputs of
an OR gate. This step is performed in the middle circuit of figure 2.8. In fact,
this circuit is the solution to the problem. Many designers prefer not to have
two different symbols for a NAND gate on the same diagram, however, and
so will convert the middle circuit to the rightmost one. It is a matter of taste
as to which representation is preferred. If the input X5 is not available, an
additional NAND gate (with all its inputs tied together) will be necessary for
the inversion of x;.

The last example illustrated that a prototype circuit consisting of AND
and OR gates can be converted to one using only NAND gates. This principle
can be extended to any prototype circuit consisting of AND, OR, NAND and
NOR gates. This prototype circuit can always be transformed into a NAND-
gate-only circuit by the inverter-growing process (with discrete inverters
provided by degenerate NAND:s). This argument can be applied also to the
transformation of any prototype circuit to a NOR-gate-only circuit.

The usual transformation problem is to produce an equivalent circuit with
as few discrete inverters as possible. In a processing sense, discrete inverters
are redundant—they neither generate nor destroy information. Usually some
trial and error is necessary in order to minimise discrete inverters, as illus-
trated in the following example.

Example 2.4

Realise the exclusive OR function z=x;X, +X;x, with two-input NAND
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gates using as few gates as possible. The complemented variables X, and X,
are not available elsewhere and so must be generated as part of the solution.

Solution The direct algebraic realisation of z and its subsequent transforma-
tion is shown in figure 2.9. Five gates are required, with two of the gates

X1
X2
5 =
X1
X2

Figure 2.9 Direct realisation of example 2.4.

acting as inverters. In searching for a simpler solution, a promising idea would
be to use one gate to produce X; + X, (a NAND gate is equivalent to an OR
gate with inverters on the input). The gate is then ‘more active’ than it would
be with both of its inputs connected together. This output, when ANDed with
x,, produces x,X%, (since x,x; =0), which is one of the desired output terms.
The rest of the design is straightforward, and is shown in figure 2.10. It is seen
that this indirect realisation uses only four gates, and so represents an im-
proved solution.

X
X4 -
Xz z =
X2

Figure 2.10 Another solution for example 2.4.

In attempting to minimise discrete inverters it is generally necessary to use
a variety of gate types. For example, sometimes a mixture of NAND and
NOR gates will completely eliminate the need for discrete inverters. Also, as a
rule it is desirable to use one many-input gate rather than several small ones
in minimising the number of gates (and connection wires) needed in the
realisation. But in a manufacturing environment it is usually beneficial to
reduce the number of gate types to a minimum. This procedure eases stocking
problems and assembly procedures. There can also be significant price dif-
ferences between different gates. Therefore, for example, a company might
decide to use only two- and four-input NAND gates. Such a policy will
usually result in some of the gates being used as simple inverters. This result
is not necessarily bad, however. In the implementation of a large system there
will usually be some gates left over. These extra gates can then be put to use as
inverters. Other criteria can also be used to estimate whether or not a design
is optimal. Some of these criteria are discussed in section 5.5.

Occasionally a logic-circuit design requires numerous inverters for the x;
inputs. A general method for dealing with this case will be illustrated with the
following example.
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Example 2.5

Realise the function z=Xx;X,%X; 4+ X4%s with AND gates, OR gates and in-
verters, using as few inverters as possible. The complemented inputs X, are
not available and so must be generated within the circuit.

Solution The transformations of figure 2.11 are used, which result in the
saving of four discrete inverters.

X4
X2
X3 -
- =
X4
Xs

Figure 2.11  Discrete-inverter reduction for example 2.5.

The last example led to the equivalence

szl)_CZx;; +)_C4)_C5 =(X1 + X, +X3)(X4+X5)

where the long bar indicates inversion (or complementation) of the ANDed
output. This equation is a particular example of De Morgan’s theorem. In
algebraic form this theorem gives an equivalence between two logic expres-
sions, for which one expression contains complements of all terms and opera-
tions of the other expression. It can be written as

Z=ZP,'
Z=l—[131

where each P; is the product (or ANDing together) of input variables (or their
complements). For example, let P;=x,x, and P,=X;x;. Then z=
(x1x2)(X1x3)=(X; +X,)(x; +%3). The natural way to apply De Morgan’s
theorem for inverter reduction, however, is to use the pictorial procedure of
the previous example. This procedure tends to produce fewer errors than pure
algebraic manipulation based on De Morgan’s theorem.

2.3 The Karnaugh map

The discussion so far has been concerned with gates and the realisation of
some output specifications in gate form. Attention is now focused on the
minimisation of the specification itself.
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2.3.1 Expansion into minterms

The first task is to develop a method that will detect whether two logical
expressions are equivalent to each other. For example, the expressions
7, =X,%3+X2X3+X1X2X3 and z, =X, + X, X,X3 are equivalent to each other,
but this fact is not obvious from casual inspection of z, and z,. Looking at z,
and z, more closely, it is seen in each case that there are product terms with
one or more input variables missing. These missing variables can be recovered
by using the fact that x; + X;=1. Thus, z; becomes

2y =X1X3(X2 + X2) + X2x3(x1 + X1) + X1X2X3
=X1X2X3+X1X2X3+X1X2X3+X1X2X3+X1X2X3
Applying the method to z,, it is found that
Zp=%5(x1; + X1 Nx3+X3)+ X, X2X3
=(x1X2 + X1 X2)(X3 + X3) + X1X2X3
=X1X2X3+X1X2X3+X1X3X3+X1X3X3+X1X2X3
=z

This expansion appears to be a retrograde step, since simplification of the
output expression was the original intention. None the less, the expansion
does provide a standard form for any output expression (which can be used for
equivalence checking). This form contains the sum of a number of product
terms, each of which contains all the x; variables. Such a term is referred toasa
minterm. Two output expressions are said to be the same if each contains the
same set of minterms. Once an expression has been put into minterm form, the
next task is to find the simplest expression that represents the set of minterms.

2.3.2 Development of the map

Referring to the above example, it is seen that each time a term is multiplied
by (x; + X;), the number of terms increases by one, and each term contains one
more variable. Both effects increase the number of gates required in the
realisation. Conversely, if two terms can be found that are the same except for
a single variable, say fix; +f1X;, then these expressions can be combined and
the x; variable eliminated. This procedure is the basis of the Karnaugh-map
method.

The Karnaugh map is composed of squares such that each square re-
presents one minterm. An output expression is entered into a Karnaugh map
by simply placing 1’s in the appropriate minterm squares. A key feature of the
map is that minterm squares that differ in only one variable (for example,
x1x,x3 and x;x,%3) are made to lie next to each other. The eye can then spot
clusters of 1’s which are essential for map simplification. The main problem in
the development of a multivariable map is to provide all the adjacencies that



14 ANALYSIS AND DESIGN OF SEQUENTIAL DIGITAL SYSTEMS

are needed while confined to two-dimensional space (for ease of working).
The two-variable map is simple to draw. It is shown in figure 2.12, with
three different labelling schemes. The leftmost scheme is the most direct way
to indicate minterms. Each minterm is simply the product of a row and a
column variable or, in set-theory terms, the intersection of a row strip and
column strip. Usually the complemented variables are not labelled, as shown
in the centre map. The binary notation scheme is shown at the right. The 0

- X1
BHoox ol N 0 1

X2 (0]

x2 Xz{ 1

Figure 2.12  Different forms of a two-variable Karnaugh map.

indicates X;, while the 1 indicates x;. In figure 2.12, the adjacency between
minterms is satisfied. The minterm squares X, %, and x 1% differ by more than
one variable change, and so are not considered adjacent (even though their
corners touch),

The three-variable map is considered next. In order to meet the adjacency
requirements, the natural way to draw this map would be in three-dimen-
sional space. Such a map is drawn at the left in figure 2.13. On this map the x;,
axis is from left to right. Thus the x, variable on each block must change from

X122
XAN_00 01 11 10
G00§010 | 110 1100 0
- -
001|011 ] 11 1101 1

Figure 2.13  Development of a three-variable Karnaugh map.

Oto 1in moving from a left-side block to a right-side block. The same arrange-
ment exists for the other two dimensions. However, it is preferable to re-
present this map in two-dimensional space. This step can be performed by
shifting the blocks 000, 100, 001 and 101 in the figure to the front row. Thus,
block 000 is put to the left of 010, and so forth. The shifted block pattern is
then viewed from the front, which gives the arrangement in the centre of
figure 2.13. This rectangle can be labelled with variables, as shown at the right
in the figure. The result is a three-variable Karnaugh map, drawn in two-
dimensional space. In order to draw this map, it has been necessary to
separate 000 from 100 and 001 from 101. These adjacencies can be retained
by imagining the map to be joined together at the left and right edges.
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In the construction of a four-variable map the sequence of values for x;x,
in figure 2.13 can be repeated along a vertical axis. The result is shown in
figure 2.14. In this figure the top and bottom edges are also considered to be
adjacent.

X1 X2
X3x8\_ 00 O1 11 10

00

01

"

10

Figure 2.14 A four-variable Karnaugh map.

2.3.3 Map entries

When an output expression is given in minterm form the map is readily
constructed, by placing 1’s in every square that corresponds to a minterm. For
example, in the expression z=3X;x,x3 + x;X;x3, the Karnaugh-map entries
are shown in figure 2.15. In this map it is apparent that the minterms are not
adjacent. Each blank square can be given a 0 entry if desired.

X4

1 1 }Xs

——
X2

Figure 2.15  Entries on a three-variable map for z=XX3X3+X1X2X3.

If the output is not given in minterm form, then the map entries will appear
in clusters. For example, let z=x,X3x4+ Xx1X,X4. Evidently a four-variable
map is required. The first term does not contain x; ; therefore, 1’s must occur
on the Karnaugh map in both the x; and X, regions for this term. A similar
result holds for the x5 variable in the second term. The resulting map for this
expression is shown in figure 2.16. Loops have been placed around the 1’s

Xy

—
Wz,

C 1y, v(;3x4

Xad

L X3

M

X2

Figure 2.16 Map entries for z=Xx,X3x4 4+ x1X2X4.
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common to each term of z. Note that the 1’s in the rightmost column are
adjacent since the top and bottom edges of the map are imagined to touch
each other. In this example each term with one missing variable gives rise to
two 1’s on the map.

The next example of interest is z=X,%4 +x;X3. The first term gives rise to
I’s in all the corners (which are imagined to be adjacent) and the second term
gives a square cluster of four 1’s in the upper right corner, as shown in figure
2.17. Note in this example that minterm (x;X,X3X,) is included in more than
one term. In general, if a term has k missing input variables, the map will have

X9
i

BlIRGS
L]y

X4

> X3

1 (i_[

+ Y
X2

Figure 2.17 Map entries for z=X,%a + x1X3.

a cluster of 2* adjacent 1’s. The cluster will be rectangular in form with each
side of the rectangle having a number of squares that is a power of two. For
example, I x 1,2 x2 and 2 x 4 are permitted, but 2 x 3, 1 x 6 or 2 x 6 are not.

2.3.4 Map factoring

The process of map factoring involves the grouping of the 1’s on a map into
rectangles such that the rectangles are as large as possible and such that all 1°s
are covered at least once. When this has been accomplished the output z can
be read from the map in its simplest form. Each rectangle is said to represent a
Sactor of the map. This process is the reverse of expanding z into minterm
form.In general arectangle of 1’sis called an implicant of z. If the rectangle has
been made as large as possible (maximum area) it is referred to as a prime
implicant. If a minterm cell is contained in only one prime implicant, that
prime implicant must appear in the output expression. Such an implicant is
called an essential prime implicant. These terms will be illustrated by the
example z=X;x,X3 +X1X2X3 + X1 X3X3 + X1 X3X3, which is shown in the map
of figure 2.18. The implicants are the original minterms together with the

X
2
Figure 2.18 Illustration of implicants, prime implicants, and essential prime implicants.
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terms x,X3, X1 X3 and x,X,. The prime implicants are x,X3, x1X3 and x,X,. The
essential prime implicants are x,X3 and x;X,. These two implicants include
(or cover) all the 1’s on the map, with only two factors. The third (redundant)
prime implicant x;X; is not needed in the generation of z.

In general, map factoring consists of finding the prime implicants on a map,
and then selecting the minimal (irredundant) set of prime implicants. These
two steps are often done simultaneously in map factoring, especially if the
number of variables is small. The ‘method of attack’ is first to factor the 1’s
that can be combined in only one way. The resulting prime implicants will be
essential. The remaining 1’s are then factored. In figure 2.18, for example, the
1’s representing X;x,%; and x;X,x3 can only be combined in one way (x,X;
and x,%,) and so these are essential prime implicants. In this case these
essential prime implicants cover all the 1’s, and so the map has been completely
factored. It would be a mistake to include the implicant x;X; in z, even
though it is the first rectangle spotted on the map.

Referring to figure 2.17 it is seen that 1’s can be re-used if necessary in
factoring. The goal should always be to make the rectangle as large as
possible, regardless of how often 1’s are re-used. To illustrate this point,
consider the map of figure 2.19. How shall the remaining 1’s be factored? If

X4

IR

1 1 1

X441
1 1 1

X3

1 1 1

X2

Figure 2.19  An example of 1's re-use.

they are lumped together the resulting implicant is X, x,. But this implicant
is not prime. The corresponding prime implicant x, will include the column
X1X,, which has already been used in the other prime implicant.

2.3.5 Many-variable maps

The Karnaugh map can easily be extended to handle five and six input vari-
ables. The five-variable map is shown in figure 2.20. In the middle of the map
is a reflection plane, which can be likened to a mirror. In this map minterm 4
is not only adjacent to B, but is also adjacent to C (by the action of the mirror).
Minterms E, F, G and H are all adjacent and thus form a (prime) implicant
square.

A reflection plane can be added to the vertical direction, which leads to a
six-variable map, as shown in figure 2.21. The figure has sixty-four minterm
squares. The number of adjacencies is considerable, and it requires some
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reflection plane Xy
X2
f t‘ Al
A 8 c
J I3 F
X5
G H
Xa
—————— e p—
X3 X3

Figure 2.20 A five-variable Karnaugh map.

practice to factor the map in an optimal manner. None the less, the afore-
mentioned principles are applicable here.

X1
X2
K

- "

X6

X5

xa X669 .J

X3 X3

Figure 2.21 A six-variable Karnaugh map.

A seven-variable map can be constructed by placing two six-variable maps
side by side. An eight-variable map requires four six-variable maps arranged
in a square. These higher-order maps are of most use for the case where the
number of minterms is reasonably small, and yet large enough for some
factorisation to occur. If more than eight input variables are present, the
authors have found that it will be necessary either to partition the problem
(which s discussed in section 2.4) or to employ computer programs. Examples
of such computer programs can be found in Dietmeyer (1971). A comprehen-
sive bibliography of books on logic design is given by Lewin (1968). Finally
Potton (1973) gives an expanded treatment of Karnaugh maps and combina-
tional logic.

2.3.6 Selection of required prime implicants

The removal of obvious essential prime implicants (in which a 1 can only be
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combined in one way) has already been discussed. The next problem is to
determine which of the remaining prime implicants are to be used.

In general a table can be formed with minterms across the top row and
prime implicants down the left-hand side. Such a table is shown in figure 2.22.

required minterms
m; my; m3 My

prime Al1 1 1
implicants B 1 1
C 1 1

Figure 2.22 Table used in the selection of essential prime implicants.

The essential prime implicants can be detected by looking for columns with
only a single 1. After these implicants and their associated minterms are
removed, it is not immediately obvious which combination of remaining
prime implicants will provide cover of the remaining minterms.

An algebraic expression of the complete coverage can be written as
follows. Minterm m; requires 4, minterm m, requires A+ B, and so on.
To satisfy all minterms, A(A+ B)YB+C)A+ C) is required. This expres-
sion can be expanded into (44 +AB)AB+BC+AC+CC)=(A+AB)
(AB + AC + BC + C) =(A(1 + B)AB + C(A + B+ 1)) = A(AB + C)=
AB+ AC, since (x + 1)=1. The result is that either 4 and B or A and C can be
the required prime implicants. The choice between these two sets is arbitrary.
It could well depend on the ease of implementation in relation to other prime
implicants. The above procedure was first described by Petrick (1959) and is
sometimes referred to as Petrick’s method.

The Karnaugh map can be used in this expansion as well. Let z=A4(A4 + B)-
(B+C)(4 4+ C). By using De Morgan’s theorem (see section 2.2) it is found that
z=A+AB+BC + AC. These terms are entered on a three-variable map as
shown in figure 2.23. The remaining squares are then given a 0 entry. These

11@1
110@}c

Figure 2.23  Karnaugh map for the selection of essential prime implicants.

zeros represent the factors of the complement of z, that is, the factors of z.
Factoring the zeros gives z=AB+ AC, which is the result of the algebraic
expansion above.

Either of these techniques gives all combinations of prime implicants that
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are necessary and sufficient to provide complete coverage.

2.3.7 Don’t cares

In some designs it is known that one or more input patterns will never occur.
If the input is coming from a four-bit decade counter (counting from 0 to 9),
for example, it is known that the bit patterns corresponding to the numbers
from 10 to 15 should never occur. These unused patterns are commonly
referred to as don’t care conditions. The corresponding minterm squares in the
Karnaugh map are marked with x ’sto indicate the don’t cares. When factor-
ing the map, these don’t cares can be used, if desired, for forming larger prime
implicants. For example, figure 2.24 shows the map for which z=1 whenever
X1

X4

L x3

X2

Figure 2.24 Example of don’t cares.

the count exceeds 7. If the don’t cares are not used, then z=X,X3x,. If they are
used, however, z=Xx,. Before minimising a logic expression it is obviously
desirable to learn of all the don’t cares that will exist in practice. Sometimes it
is also desirable to find a minimal expression for all the don’t cares. In the
unlikely event that one should occur (due to circuit mal-operation), an
alarm can be produced. In the above example the don’t care alarm would
be z=x,x4+x3x4. Sometimes it is desirable to factor the 0’s (or blanks)
rather than the 1’s. The x’s can also be used to simplify this factoring.

2.4 Partitioning

Combinational-logic designs that contain a large number of input variables
are occasionally encountered. An attempt to minimise the resulting expres-
sions directly, even with computer programs, can be quite time-consuming
and error-prone. An examination of the over-all design requirement will often
reveal an inner structure, or partitioning, of the problem. Each block in the
partitioning will represent a simplified logic design. This breaking-up of a
massive circuit into smaller blocks is useful not only from a design point of
view but also for subsequent tasks, such as a description of circuit functions
in a manual, and for mal-operation detection. This partitioning is a reflection
of man’s desire to break up any complex function into block-diagram form,
where each block is readily understood. An example at this point will prove
instructive. '
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Example 2.6

Design a two-bit equality detector for the words x;x, and x3x4. The output
z is one only if the corresponding bits in each word are equal. The circuit is to
be made with two-input NAND gates.

Solution If a direct solution is attempted, then the first step is to write a
complete expression for z, which is z=3X;X,X3X4 + X X2X3X4+ X1 X2X3X4 +
X1X2X%3X4. If this expression is put on a four-variable Karnaugh map, it will be
seen that no factoring is possible. A direct realisation of z requires fifteen two-
input NAND gates plus an additional fourteen NAND gates used as inver-
ters. :

In seeking a partition for this design, it is worth while to consider the design
objective again. On reflection, it is seen that the objective can be met with a
single-bit equality block and a block that combines or processes these equal-
ities. The design has therefore been simplified. The design of the single-bit
equality block is straightforward. It is specified by the truth table and given by
the circuit in figure 2.25. This circuit is the exclusive OR gate of example 2.3,

Xa
Za _)(5:)) > Za

Figure 2.25  Single-bit equality detector for example 2.6.

with an inverter on the output. The equality-combining block for this example
is simply a two-input AND gate. The complete realisation is given in figure
2.26. It requires nine NAND gates plus three NAND gates used as inverters.

X4

X3
X2
Xa

Figure 2.26 Two-bit equality detector in partitioned form.

In general it is not known whether a partitioned design will require greater
or fewer gates than an unpartitioned one. However, if the partitioned design
requires more gates, these extra gates can often be justified by ease of design,
ease of understanding and ease of testing. The partitioned design is also
readily expandable to handle more digits than the original specification.
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2.5 Iterative circuits

The central idea of an iterative design is to perform a partitioning such that
all blocks are the same, with the possible exception of the first and last blocks.
Iterative designs are usually restricted to specifications that contain a great
deal of symmetry. An example should clarify these points.

Example 2.7

Design a circuit for the twenty input variables x;, xs, ..., X20 such that z is
one whenever exactly one of the inputs is at one.

Solution Ttis clear that a direct approach would result in a massive combina-
tional circuit. In solving this example, it is first imagined that a partitioning
block B; somewhere in the centre of the circuit will have as inputs x; and the
outputs of the previous block B;_ ;. A list of relevant input and output lines
for B; is formed, such that the output lines are related to the input lines except
for the x; itself. The list for the present example is shown in figure 2.27. It is

two or more X; =1 =3 Xy Zp = two or more x; = 1

one x; =1 —Mxp 2g [—P onex;=1

no x; =1 =3 xe Zc [ nox; =1
5;

Figure 2.27 A list of input and output lines for the iterative block B; in example 2.7.

seen that a four-input three-output circuit is necessary. In principle a truth
table can be produced for each z, and the expression minimised on a
Karnaugh map. In this case the necessary expressions can be written down by
inspection, as follows

ZA=XA+ XBX;

zgp = XgX; + XcXi

Zc=XcX;
These expressions are easily realised in gate form. Attention must now be paid
to the first and possibly last blocks. The first block will reduce to

ZA—_—O
Zp=X1
Zc=)_(71

(since there are no previous x inputs). The last block can be designed to
produce the required output z, which results in the design equation

z=XxpX20+XcX20
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Sometimes it is necessary to treat the first few blocks as special cases. For
example, if the requirement for z involves three inputs, blocks B; and B, will
be preliminary stages, having different structures from the iterative block.

The above example illustrates the simplicity of iterative design compared to
straightforward design. All of the advantages of partitioning referred to in
section 2.3 are enjoyed in an iterative design. A further advantage is that addi-
tional blocks can easily be added (or subtracted) if it is decided to change the
number of variables at some later stage. One disadvantage is that a change in
x,, for example, will have to ‘ripple’ through the entire circuit before changing
z. If a large number of blocks is being used, the resulting delay could be
significant.

2.6 Multiple outputs

In the previous section an iterative design that required three outputs was
given. A straightforward realisation of these outputs would involve treating
each output variable as independent of the other outputs, the result being a
separate map factoring for each output variable. Each z would be only a
function of the x;, and not a function of intermediate outputs of the other z
circuits.

The advantages of this procedure are ease of design, ease of circuit under-
standing and ease of troubleshooting. For example, each z circuit could be put
on a separate plug-in card. Repair in this case reduces to card replacement.
The disadvantage of the procedure is that more gates are usually required.

The use of common map factors to reduce the number of gates is best

illustrated through some examples. In figure 2.28 a three-variable map with
Xy

2y | 4,22 2,22

22 }X3

——
X2

Figure 2.28 Example of multiple-output simplification.

the two outputs z, and z, is shown. It is seen that both z; and z, require the
prime implicant x,X3. This factor can therefore be used in the formation of
Z1=X2X3+X1X3 and z, =x,X3 + X1x3, which will reduce the gate count. As a
counter example, however, consider the map of figure 2.29. The common area

Xy
S —

Z2 |2,22| Z4

22 | 222 2 }Xs

X2
Figure 2.29 Counter-example of multiple-output simplification.
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X1X; 18 not a prime implicant of either output. In fact the prime implicant of
z, (that is, x,) overlaps with the prime implicant x, of z, to produce the
common area. In this case the simplest outputs are z; =X, z, =X,, and not
Z1=X1X2+ X1, Z =X1X3 + X>.

In general, the use of common factors to simplify multiple-output expres-
sions works best for factors that are common prime implicants to two or more
outputs. If the common factor is an obvious essential prime implicant to the
outputs, so much the better. Usually some trial and error is necessary to see if
a real advantage is gained in using common factors for multiple-output
circuits. A formal technique for the common-factors approach is given in
Hill and Peterson (1968).

2.7 Concluding remarks

In using logic gates a number of practical points should be kept in mind.
First of all there is the loading problem. The output of a gate is simply not
able to drive an unlimited number of gate inputs. The maximum ‘fan-out’ (or
number of inputs that can be driven) should be established for each family of
logic devices (or, in some cases, for each device). The fan-out will represent an
upper bound. In some cases it could be necessary to add additional buffer
stages to cope with a large fan-out requirement.

The transient problem should also be considered. In the event of sudden
changes in all the inputs to a combinational circuit, brief pulses can appear at
the output before the output settles down. These pulses are due to the multi-
path nature of a combinational circuit, where each path will have a different
propagation time. Sometimes these pulses are difficult to see on an oscillo-
scope, but their presence can be ascertained by their ability to trigger a flip—
flop, for example. If these pulses are objectionable, they should be filtered out.
The simplest way to accomplish this is by the addition of a small capacitance
to the output. More will be said about these transient pulses in chapter 4.

_ When the output of a logic gate switches from one logic level to the other,
there is usually a sudden change in the power-supply current to the gate.
This transient, if not controlled, can induce false inputs into other gates for a
brief period of time. The popular solution to this problem is to provide many
power-supply-decoupling capacitors throughout the circuit. These capacitors
may be thought of as small batteries that are able to supply sudden, limited
current pulses without much voltage variation. Large electrolytic capacitors
should not be used for this purpose, since their inputs can be inductive at high
frequencies. These capacitors can be used, however, to reduce substantially
any mains interference that might exist.

2.8 Examples

This section contains several examples, both worked and unworked, that
illustrate many of the salient points of this chapter. The unworked examples
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should be capable of solution by readers who have followed the chapter
material and the worked examples.

Example 2.8

Realise a twelve-input AND gate by using only two- and four-input NAND
gates and two-input NOR gates. The realisation should have as few gates as
possible.

Solution The first step is the construction of a prototype circuit. In this
circuit only two- and four-input gates should be used. To provide rapid con-
centration, four-input gates will be used for all inputs, as shown in figure 2.30.

4 z

Figure 2.30 Prototype and final circuit for example 2.8.

The outputs of these gates can then be combined with two-input gates, or with
another four-input gate. (The two-input gates are used in figure 2.30.) The
addition of inverters must start at the outputs of the four-input gates, as these
gates are to be NANDs. The procedure is then automatic, and yields the
circuit on the right in figure 2.30. One discrete inverter is required.

Example 2.9

Find all of the prime implicants in the map in figure 2.31.

L]

Xq 4

X3

X2
Figure 2.31 Karnaugh map for example 2.9.

Solution It is tempting immediately to start drawing rectangles around
groupings of 1’s. This procedure would undoubtedly locate most of the prime
implicants, but the problem statement indicates that all of these implicants
are to be found. A more systematic procedure is to go to the first square,
identify all prime implicants associated with that square, then go to the second
square, and so on. The path through the squares will be arranged to cor-
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respond to the way that one reads a page—Ileft to right, top row to bottom
row. The result of this procedure is as follows.

minterm square prime implicants minterm square prime implicants

.)_(31)_(:2.)?3564 )?234, 21)_(32 )—CIXZX3X4 )_Cl)_Cz, 22X3X4

X1X2X3X4 X2X4 X1X2X3X4 X1X2X4, X1X3X4
)_(1)_(2)_(?3)64 .)_613_62, )_Cl)_C3X4 Xl)—62X3X4 X1X3X4, .)??2X3X4, xl)_Cz.X3
X1X2X3X4 X1X3X4, X2X3Xg X1X3X3X4 X1X3,X2X4
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It is therefore found that eight prime implicants exist.

Example 2.10

Find a minimal set of prime implicants for example 2.9.

Solution Referring to figure 2.31, the right-side upper corner indicates that
X,X,4 is an essential prime implicant, as only one combination pattern exists
for this square. Removal of this prime implicant leads to the map of figure

2.32, in which the removed 1’s are represented as don’t cares, since these
X4

 teme—
X X
1 1 1
X4
1 1 1
X3
X X
—_———

X2
Figure 2.32  Removal of an essential prime implicant.

squares can be used again if needed. Forty per cent of the 1’s have now been
removed ! By inspection of the figure it is seen that a minimum of three rect-
angles (or prime implicants) will be necessary to include all the remaining 1’s.
One such set is X, X3X,, X1X,X,, X,X3X,, and another is X, X,, x,X3x4, X X3X4.
The second set is simpler and thus represents the ‘best’ solution. In this
example the power of the Karnaugh map as a pictorial display is clearly seen.
The map enables man, with his pattern-recognition abilities, to spot the solu-
tion (almost) at a glance. The tabular approach—of listing all minterms and
prime implicants and then deciding which prime implicants are essential—
would be very time-consuming, even for this four-variable problem.

Example 2.11

A long corridor is illuminated by thirty light bulbs having a uniform spacing.
By each bulb is a phototransistor that is capable of producing a logic output
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x;. If x; is zero, the ith light bulb is lit. If a bulb failure occurs, x; goes to one.
For economy, it has been decided that bulbs will be renewed only when
three consecutive bulbs have failed. Design a logic circuit that will detect this
condition.

Solution 'The nature of the problem suggests an iterative approach. A typical
block somewhere in the middle is considered first. This block B; is shown in
figure 2.33. The iterative inputs and outputs that come immediately to mind
are ‘no failures in a row’, ‘one failure in a row’, ‘two failures in a row’ and ‘three
failures in a row’ (or ‘fault’). Now in passing from one block to the next, there
is only one pattern of interest, which progressively goes from one to two to

three failures. As far as the iterative outputs are concerned, the output ‘no
™

l

oneinarow —3» x zy P—>» oneinarow
twoinarow — xp Zp > twoinarow
faultt =3 xz Zz —> foult
B;

Figure 2.33 Iterative block for example 2.11.

failures in a row’ is of no interest, and so this variable is dropped from both
input and output lines. The remaining iterative inputs and outputs are
labelled, and x; is applied at the top. The logic equations can be written
directly from the desired pattern as

Z1=X;

Z2= X1 X

Z3=X3+X2X;

Note that z, is not x;x;+ x,. The problem is not to detect that three bulbs
have failed, but that three consecutive bulbs have failed. The above equations
are readily realised in gate form.

Example 2.12

Draw a four-variable Karnaugh map for the function z=>x,;x4 + X x,X3X4+
X1X2X3x4 + X1X2X3x4 + X1X3X3X4. Find the essential prime implicants for this
function.

Example 2.13

Design a logic circuit that goes to one whenever its three-variable input is
palindromic (x; = x3). Realise this circuit with a minimum number of two-
input NOR gates, assuming that the inverted inputs (X, X,, and X3) are not
available externally. (Hint: see example 2.4.)
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Example 2.14

Design a combinational circuit that increments a three-bit input number
X1X2X3 by one. For example, x;x,x3 =101 would result in z,z,z; =110. The
number x;x,x3 =111 should produce z,z,z3 = 000. (Hint: make a chart show-
ing all input and output combinations, and then construct a separate map for
each z.)

Example 2.15

Tom dates girls who are over 21, have red hair, and are tall, or girls who are
tall, not rich, have red hair, and are under 21, or girls who are over 21, rich and
tall. Express Tom’s preferences in the most economical manner.

Example 2.16

A four-bit binary number x;x;x3x4 is used to represent a decimal digit
between 0 and 9. Design a two-input NAND-gate circuit that will produce an
output whenever the input is a prime number. Zero is not considered to be
prime.

Example 2.17

A logic circuit has an input consisting of a six-bit binary number x;x, ... xg.
The circuit is to detect when any of the numbers 7, 9, 13, 23, 25, 27, 29, 34, 38,
39,41, 45, 55, 57, 59 or 61 occur. The numbers 24 and 26 are don’t cares. For
example, the number 9 is x;x,Xx3x4Xx5x¢ =001001. Find the essential prime
implicants for this circuit.
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Introduction to Sequential
Systems

3.1 Fundamental concepts

3.1.1 Defining features of sequential systems

The systems that have been discussed so far have been purely combinational.
The fundamental property of such systems is that, at all times, all of the
outputs are determined solely by the present instantaneous values of all the
inputs. Of course, in a practical system, there will be some delay between an
input change and the resulting changes in one or more of the outputs; but,
when equilibrium is reached, a knowledge of all the inputs, together with the
logical structure of the system itself, enables all of the outputs to be deter-
mined uniquely. In contrast, the outputs of sequential systems are determined
not only by the present values of the inputs but also by their previous values.

Clearly, if the outputs are to depend on previous values of the inputs, the
system must contain some elements that are capable of storing digital in-
formation. It is the presence of storage devices, of whatever kind, that distin-
guishes sequential systems from purely combinational ones.

3.1.2 Combinational and sequential interpretation of the problem

specification

In some cases a system specification is inherently either combinational or
sequential and can be realised only with a system of the appropriate type.
Frequently, however, the specification can be interpreted by the designer
either in terms of a combinational system or a sequential one. The former
approach often has the advantage of speed whereas the latter can be more
economical to realise.

Consider, for example, the problem of comparing two binary numbers (N
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and M). Three outputs are required; one (z;) is to be logical one when N
exceeds M, the second (z,) is to be logical one when M exceeds N and the third
(z3) 1s to be logical one when N and M are equal. This problem is clearly
amenable to a purely combinational solution. However, even if N and M are
of only four bits each, listing all possible input combinations produces a truth
table with 2% x 24 =256 rows and the minimisation problem is an eight-
variable one.

Problems of this kind are often more amenable to an iterative approach, as
discussed in chapter 2. It must be emphasised that this approach does not
involve storage and, therefore, strictly falls into the category of combinational
systems. But, since many of the concepts of iterative systems have their
counterparts in truly sequential ones, a brief review of the iterative approach
of section 2.5 would not be inappropriate here.

The direct combinational approach makes a simultaneous comparison of
all the digits of both numbers. Using an iterative approach, the most signifi-
cant digits of each number are compared first in a relatively simple circuit.
There are four possible combinations of these two binary digits, of which
three groups are relevant to the present problem

(a) the most significant digit of N exceeds that of M;
(b) the most significant digit of M exceeds that of N; and
(c) the most significant digits are equal.

If either case (a) or case (b) applies, the relative magnitude of N and M is
immediately determined and the remaining digits of the two numbers cannot
influence this. If case (c) applies, the relative magnitude of N and M will be
determined by the next (less significant) pair of digits unless they are also
equal, in which case the third pair must be examined, and so on.

The advantage of this approach is that the relatively simple circuit that
compares one pair of digits can be repeated for each subsequent pair and, if a
design is to be modified to accept numbers containing more digits, it is merely
necessary to add more ‘cells’ consisting of this basic circuit. As there are three
distinct pieces of information to be handed on from one cell to the next, two
connections will be required giving one redundant combination. One possible
arrangement is given in figure 3.1a. The variables z, and z, that ‘hand on’
information concerning the relative magnitudes of previous digits are some-
times called the state variables. In this particular example, z;z, =00 is chosen
to indicate that all previous pairs of digits examined have been equal to each
other, z,z, =01 indicates that M has already exceeded N and z,z,=10 in-
dicates that N has exceeded M. Each cell produces a pair of updated state
variables, in accordance with the truth table of figure 3.1b, which are handed
on to the next cell. The required outputs, as defined previously, are obtained
from the last cell and z; =Z,Z,. The detailed design of one cell will be left as an
exercise for the reader.

The iterative approach produces a system that is purely combinational
since no storage elements have been introduced. In this sense, the use of the
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Figure 3.1 Iterative approach to the comparison of two binary numbers. (a) Interconnection of
cells. (b) Truth table for one cell.

term ‘state variable’ to describe the intermediate signals is misleading since
this term is widely used in engineering and physics in relation to stored
quantities, particularly energies (see, for example, Derusso et al., 1967).

The final approach to the comparator problem is a truly sequential one. A
single cell, having similar properties to the one discussed previously, is used to
compare each pair of digits in turn, starting with the most significant. The
results of each comparison must be stored in suitable devices and these stored
values will in turn become inputs for subsequent comparisons. The process
continues until all pairs of digits have been compared; details will be discussed
later (example 3.5) when the required circuit elements have been considered:

The binary comparator can, therefore, be realised in any of the three forms
discussed above. The direct combinational approach would be the fastest but
would require the most hardware. The iterative system may or may not
require less gates but the response time could be longerin view of the increased
number of gate delays involved. The sequential system would be the slowest of
all because each pair of bits is compared in turn but could well be the cheap-
est to implement—a good example of engineering compromise!

3.1.3 Synchronous and asychronous approaches to sequential-system
design

Sequential systems may broadly be classified as either synchronous or asyn-
chronous. Synchronous systems (discussed in detail in chapter 5) are provided
with circuits that are responsible for timing the operation of the remaining
sections of the system.

In a simple realisation, the timing circuit consists merely of a square-wave
oscillator, or ‘clock-pulse generator’, and all the storage devices are con-
strained to change state only when the clock pulse changes from zero to one or
vice versa. The resulting simultaneous, or synchronous, change in the stored
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values is extremely helpful in avoiding timing difficulties, particularly in
complex systems. The disadvantage of this approach is that sufficient time
must be allowed between clock pulses for the slowest part of the system to
respond and hence the remaining, faster, parts are effectively slowed down to
the speed of the slowest.

The synchronous approach is particularly flexible. In complex systems the
timing oscillator can have several outputs—eachat adifferent relative phase—
that operate distinct sections of the system. This allows many otherwise
difficult timing problems to be readily solved.

In contrast, asynchronous systems rely for timing primarily on the inherent
delays of the system elements themselves. This approach is clearly very fast
since a given element in the system begins to respond immediately on receipt
of an input change. The associated disadvantage is that, since many elements
in the system can be changing state at different times, spurious intermediate
values may arise, which cause mal-operation of other parts of the system. For
example, consider a stored binary value seven (0111), which is to be changed
to eight (1000). In a synchronous system this change would occur virtually
simultaneously whereas in an asynchronous system intermediate values of
0110, 0100 and 0000 would be passed through as the storage devices change in
turn (from right to left in this case). Consequently any subsequent parts of the
system that respond to binary six, four or zero could be incorrectly excited.
This problem and related effects, usually referred to as ‘races’ and ‘hazards’,
are further discussed in chapter 4 and their various manifestations are shown
to impose severe restrictions on asynchronous-system design.

3.2 Storage devices

3.2.1 Feedback and storage

From section 3.1.1 it follows that sequential systems consist essentially of
combinational logic (the design of which is discussed in chapter 2) and storage
devices.

Digital storage devices can be broadly classified as volatile and non-
volatile. In the former class, the stored information is lost when the power
supply is switched off and must be rewritten on restarting. Non-volatile stores,
in contrast, can hold information indefinitely in the absence of power and are
of considerable importance in computing systems. The many varieties of
magnetic storage systems have this property. In this book, attention will be
restricted to storage devices that can be realised by interconnecting logic
gates. Such circuits have become a fundamental part of the classical theory of
sequential-circuit design and are of increasing practical importance since
memories of this kind are now readily realisable in large-scale integrated-
circuit form. Memories of this kind are normally volatile.

Purely combinational systems do not make use of feedback. By applying
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feedback, an array of gates can be given the property of storage; one bit can
be stored for each feedback path. Consider the simple feedback circuit shown
in figure 3.2a. Assume that inputs S and R are both zero and, for the sake of

S —--—>Q s o}
E: Yo—1> @
R —
—r o
(a) (b}

Figure 3.2 () Application of feedback to two NOR gates. (b) Symbol for the RS flip—flop.

argument, that the output of NOR gate 1 is also zero. Consequently, since
both its inputs are zero, the output of NOR gate 2 (Q) will be one. Inputs of
zero and one to gate 1 are entirely consistent with the initial assumed value of
zero for the output of this gate. The two gates can apparently remain in-
definitely in this state, with Q = 1 (and @ =0), unless some change is forced on
the circuit. If an initial value of one had been postulated for the output of gate
1, an equally consistent state of affairs would exist with Q=0 (and 0=1).
Therefore the two cross-coupled NOR gates can store either a logic zero or a
logic one.

The inputs R and S (previously held at zero) can be used to change the value
of the stored digit. If S is made equal to one, Q will be forced to zero and,
provided R remains at zero, Q will become one. Provided S remains at one
long enough for Q to assume the value one (that is, for at least the delay time of
the two gates), the second input to gate 1 will become one and the stored value
© will remain at one even when S returns to zero. Further pulsing of S to one
will have no further effect on the state of the circuit. Conversely, setting the
value of R to one changes the stored value Q to zero. Notice that R and §
must not be allowed to become one simultaneously. If this were to happer, Q
and O—which are normally logical inverses of each other—would both be
forced to zero and the final state of the circuit would depend on which of R
and S returns to zero first.

Although one of the simplest possible examples of feedback, the circuit of
figure 3.2a is very widely used. Under the general heading of flip-flops, in-
dividual circuits of this type are normally identified by the available inputs.
The output is the stored quantity Q (and its inverse 0) and Q may be SET to
one (hence S) or RESET to zero (hence R) and the circuit—which may be
symbolised as shown in figure 3.2b—is an RS flip-flop. (The ‘set’ input is
sometimes referred to as a ‘preset’ input and the ‘reset’ function is also known
as the ‘clear’ or ‘preclear’ function.)

3.2.2 Clocked and unclocked flip—flops
The basic RS flipflop described in the previous section is unclocked. By this
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itis meant that a change in the state of the flip—flop starts as soon as the appro-
priate input (R or S) changes and is completed in a time related to the inherent
delay of the flip—flop. This is precisely what is required for asynchronous
operation.

For operation as a component of a synchronous system, the flip—flop must
be prevented from changing except at the appropriate point in the clock-pulse
cycle. This is achieved by means of clocking and a simple clocked form of RS
flip—flop is shown in figure 3.3a. The figure shows how an unclocked flip-flop
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Figure 3.3 (a) Derivation of the clocked RS flip—flop. (b) Simple edge-triggered flip—flop.
(c) Short trigger pulse generation due to inverter delay.

(with its inputs renamed R’ and §’ to avoid ambiguity) may be converted to a
clocked one by means of two AND gates. The new S and R inputs can in-
fluence the flip—flop only when CLOCK is logic one. The appropriate values
of § and R must be established in advance and the flip-flop will then change
state, in this case, on a zero-to-one transition of the clock pulse. The clock
should then return to zero before S or R are allowed to change. More details
concerning timing requirements are given in chapter 5.

Although clocked flip—flops of this form (sometimes also referred to as
‘bistable latches’) are widely used, they have one serious limitation. As long as
the clock signal remains at one, the S and R inputs of the basic flip—flop remain
connected to S and R. In a general system (see chapter 5), the S and R input
signals can, in turn, depend on the flip—flop outputs. Consequently, in order to
prevent ‘new’ values of the flip—flop outputs from influencing the input signals
and hence the state of the flip—flops, some form of isolation must be intro-
duced. One simple way of introducing this isolation is to make the clock pulse
of extremely short duration. It will then have returned to zero before the ‘new’
flip—flop output signals have penetrated the remainder of the system and
returned to the flipflop inputs. This approach is clearly not entirely satis-
factory since some ‘tuning’ is required; the pulse must be long enough to
trigger the slowest flip—flop in the system but shorter than the shortest delay
in any feedback paths that may be present.
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Two distinct approaches have been used successfully to combat this pro-
blem.

(1) Edge-triggering: an internally generated short trigger pulse is derived
from one edge of the clock pulse.

(2) Master—slave operation: the flip—flop responds to the S or R input on
the rising edge of the clock pulse but does not pass on the resulting
change of state (if any) to its output until the falling edge of the pulse.
The required isolation is, therefore, automatically introduced regard-
less of the duration of the clock pulse.

The operating principle of an edge-triggered flip—flop is typified by figure
3.3b. There are many detail variations in the circuits actually used to realise
such flip—flops in integrated form. The inherent delay—in this case, that of the
single inverter—is used to generate an extremely short trigger pulse. As the
pulse width will be of the same order as the propagation delay of the single
inverter, it is reasonable to assume that this will be less than the delay in any
part of the remaining sub-system. Figure 3.3c shows how the short pulse is
generated; the upper waveform is a single typical clock pulse. The central
waveform is the output of the inverter, where a short propagation delay has
been included, and the lower waveform shows the output of the AND gate,
which is a short pulse as required (delay in the AND gate has been ignored
since it affects equally the clock pulse and its inverse). The pulse width may be
increased by including more inverters, provided the total number is odd. This
explanation has assumed that the rise time of the clock pulse is very much less
than the delay of the inverter; if this were not the case, the short pulse would
not be generated properly. For this reason, manufacturers’ data sheets nor-
mally specify a maximun rise time for the clock input to edge-triggered
devices.

The master—slave flip—flop (figure 3.4) does not share this restriction and

master slave
S Sm S L.
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CLOCK—
R _ Rs _ a
R— QM Qs
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Figure 34 Master—slave RS flip-flop.

will trigger on a slowly varying waveform—for example, a sine wave. As the
clock input changes from zero to one, the master flip—flop will be set if S=1,
reset if R =1 and unchanged if R and S are both zero, exactly as for the clocked
flip—flop previously considered. However, the only available outputs from the
device (Q and Q) are derived from the slave flip-flop, whose outputs cannot
have changed because its inputs (S, and R;) are blocked by the inverted clock
signal and the AND gates (a race condition exists here; see the discussion in
section 4.3). When the clock signal eventually returns to zero, the master
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inputs (Sy and Ry) will be blocked from any changes that may occur in Sand
R, while Q will then, and only then, take on the value of Qwm since the AND
gates feeding S; and R, are now opened by the inverted clock pulse. To
summarise, the master flip-flop takes on the value appropriate to S and R
when the clock pulse is at one but any resulting change is transmitted to the
output of the device (Q) only when the clock pulse returns to zero, at which
time the inputs S and R become incapable of affecting the master flip—flop.
(Some devices operate with a clock signal that is the inverse of that assumed
here; in this case the words one and zero should be interchanged.)

3.2.3 Other types of flip-flop

The RS flip—flop may be regarded as the basic type from which many varia-
tions have been developed. The behaviour of the RS flip—flop may be sum-
marised by the table of figure 3.5a, where Q  is the previous value of the flip—

(a) (b}
Figure 3.5  Truth tables and symbols. (a) Clocked RS flip-flop. (b) JK flip—flop.

flop outputand Q* is its new value. The prohibited case R =S = 1is indicated
by a star and avoidance of this condition imposes a restriction on the system
designer. In order to avoid this restriction, the JK flip-flop has been devel-
loped and is very widely used. Figure 3.5b shows that operation is exactly the
same as for the RS device except that the case J = K =1 is now permitted and
always causes a change of state of the flip—flop. Although the RS type may be
either clocked or unclocked, the JK type normally exists only in clocked form
and can be either edge-triggered or of master—slave type. In addition to being
widely used in its own right, the JX flip—flop may be regarded as a general type
of which most, if not all, commonly used flip-flops become special cases.
The trigger (or T) flip-flop (figure 3.6a) changes state on every clock pulse
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Figure 3.6  Truth table, symbol and derivation from JK flip—flop. (a) T flip—flop. (b) D flip—flop.

Q)

—




INTRODUCTION TO SEQUENTIAL SYSTEMS 37

when T is one and remains unchanged when T is zero. It can be regarded as,
although not necessarily constructed as, a JK flip-flop in which J and K are
connected to provide a single input and therefore must always have the same
value (that is, only the top and bottom rows of figure 3.5b are accessible). The
T flip-flop has one serious shortcoming ; in operation, T is made equal to one
whenever a change in the stored digit is required, whether this be a change
from zero to one or vice versa. This means that if the flip—flop should acquire
the wrong state, due perhaps to an interference pulse, changes will continue to
occur at the appropriate time but the flip-flop will always be in the wrong
state—until a further interference pulse puts it right again!

A frequently used type of flip-flop is the D type where D stands for either
‘data’, as one bit of data can be stored, or ‘delay’, since a digit can be delayed
by one clock interval. Details are given in figure 3.6b, where it can be seen that
the state of the flip—flop after the clock pulse (@) is simply the value of D
before it. This flip—flop can be regarded as, but again not necessarily con-
structed as, a JK flip—flop in which J and K are always constrained to be the
logical inverse of each other. Hence J =D but K =D, and only the second and
third rows of figure 3.5b are accessible. A related, but functionally different,
device is the latch. The output of this follows the input continuously when the
clock has one value and stores the input value that exists at the instant when
the clock changes to its other value.

The remaining types of flip—flop that are normally encountered are either
minor variations of those already described or a combination of the properties
of more than one flip-flop in a single device. For example, clocked JK flip—
flops often have asynchronous SET and RESET inputs that over-ride the
synchronously controlled J and K inputs and are used, primarily, for setting
(often asynchronously) the initial state of a synchronous system.

Internal AND gates are often used in JK flip-flops to provide multiple J
and K inputs; in such a case the effective value of J might, for example, be the
logical AND of inputs J 1, J; and J 3. Finally, some or all of the available inputs
to the device may be the logical inverse of those discussed previously. For
example, if a flip—flop is constructed by means of two cross-coupled two-input
NAND gates (as opposed to NOR gates considered previously), the SET and
RESET inputs must normally be held at one for correct operation and
changed to zero only to perform the set or reset operation. Flip—flops of this
type are often loosely described as RS but should strictly be referred to as
RS; normal RS operations could be obtained, of course, by logically inverting
both input signals.

Sometimes the K (but not the J) input is inverted. This means that an
inverter is required to obtain true JK operation but D-type operation could
be obtained by connecting J and K directly. No widely accepted convention
concerning the significance of CLOCK and CLOCK seems to have emerged.
This means that manufacturers’ data sheets should always be consulted in
order to establish whether the device under consideration changes state on the
positive- or negative-going edge of the clock pulse.
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3.3 Sequential sub-systems

3.3.1 Basic sequential circuits

In the design of sequential systems several basic configurations recur fre-
quently, occasionally as simple systems in their own right, but more usually
as sub-systems within a more complex configuration. For this reason various
classes of sub-system have been identified, some of which will be discussed in
later sections. In some cases designs can be accomplished merely by intercon-
necting appropriate sub-systems; examples will be discussed later.

3.3.2 Counters

Possibly one of the first forms of sequential digital system, counters are of
wide application. The requirement is to produce a digital output that, in
any required code, is a measure of the total number of input (clock) pulses that
have occurred since some selected starting point. The specification of a given
counter is defined by the code in which counting is performed and the mode of
operation (synchronous or asynchronous). Of course, there will be an upper
limit to the count, at which point the counter returns to its initial state and
starts counting again.
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Figure 3.7 Asynchronous three-bit binary counter and its waveforms.
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Figure 3.7 shows a three-bit asynchronous binary counter that counts from
0 to 7 and uses (unclocked) T flip—flops, which, in this case, trigger on the
negative-going edge of the input pulse. The first flip—flop will trigger on every
input pulse, whereas the second will trigger only on negative-going edges of
Qa and so on. It can be seen that, at any instant, QcQpQa represents a binary
number indicating the total number of input pulses that have occurred since
the counter was set to zero by means of the reset inputs. (If the total number of
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pulses should exceed seven, the counter will recycle and indicate the total
number minus an appropriate multiple of eight.) The waveform diagrams
also show the cumulative delays that arise from the asynchronous nature of
the interconnections and result in the outputs giving a spurious count during
transitions. These waveforms are idealised. An actual waveform could have in
addition ringing, spikes, d.c. pedestals, and mains hum!

Counters that operate downwards are sometimes required. It can easily be
verified that the counter under discussion can be made to operate in the
reverse sequence by connecting the T inputs of the second and third flip—flops
to the O (instead of Q) outputs of their predecessors. Alternatively, this counter
can be formed by using the outputs Oc, Os and Q4 of figure 3.7.

To obtain synchronous operation, all flip-flops must be triggered directly
from the input as shown in figure 3.8 (where the asynchronous reset connec-
tions have been omitted for clarity). Clearly, additional inputs are required to

G Qg @
1 J Q J Q J Q
cLocH cLocK CLOCK
K Q K Q K Q

INPUT

wor_ L LT LT L
— I L
e I L

—

Qc
Figure 3.8 Synchronous three-bit binary counter and its waveforms.

prevent all the flip-flops changing state on every clock pulse. In the arrange-
ment shown in the figure, O changes on the negative edge of every clock pulse
(since this flip—flop has JK =11) but Qg changes only when Q4 =1 and sim-
ilarly a change in Qc requires Q, and Qg =1. The waveforms show that this
mode of connection produces the required binary sequence; a more formal
derivation may be made using the techniques employed in example 3.1. The
waveforms shown in figure 3.8 make no allowance for flip-flop operating
delays. In reality the flip-flop output changes will be delayed with respect to
the falling edge of the clock pulse by one, and only one, flip—flop delay (unlike
the case of figure 3.7), but this delay will, nevertheless, be susceptible to normal
device-production tolerances.

A wide variety of counters, both synchronous and asynchronous, are avail-
able as medium-scale integrated circuits. Any required sequence may be
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readily realised; the techniques developed in chapter 4 may be used for
asynchronous circuits (a simple example is considered in example 3.9) and the
following example illustrates the approach required for synchronous opera-
tion.

Example 3.1

Design a three-bit synchronous counter that operates in the Gray code of
the flow table in figure 3.9a and uses D-type flip-flops.

Present state Next state

Q Qs Q |0 Qg O
[¢] O 0|0 0O 1
o] o 1 o 1 1

(a) 0 101 o 1 0
0 T 011 1 o0
1 T ot 1 1
1 11 1 0 1
1 o 1 1.0 0O
1 0O 0|0 0 o

[ [* @
———— e,
t 1 1 1 1 1
1 1 }OC 1 1 } Q 1 1 Qc
———
Qs Qe @s
Da=QpQ +Qae Oa=Qs0c + G Qc Dc=0nQs+0n0s

(b)

CLOCK

Figure 3.9 (a) State table, (b) flip-flop input maps and (c) circuit realisation for example 3.1.

Solution A Gray-code sequence (in which each state change involves the
change of only one bit) is shown in the ‘present state’ column of figure 3.9a,
where Q4, O and Qc represent the outputs of the three flip—flops to be used in
the counter. For convenience the required ‘next states’ are recorded in an
adjacent column. The D flip-flop (section 3.2.3) requires an input (D) that is
one when, and only when, the required next output value is one. Hence, it can
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be seen that flip—flop A requires a D input (D) that is one when QA Qs Qc =010,
110, 111 and 101. This information is most conveniently recprded on a
Karnaugh map as shown in figure 3.9b, which also includes maps for Ds and
Dc. Minimal input functions may now be read off and implemented as shown
in figure 3.9c.

3.3.3 Counters having more than one operating sequence

The counters discussed so far have only one specified operating sequence. In
general, a counting system may have many possible sequences; the one re-
quired for a specific purpose can be selected by means of control inputs. A
frequently encountered example is the reversible counter, which operates, in
a given code, either upwards or downwards depending on the value of a ‘count
direction’ input signal (alternatively, two clock inputs may be provided, one
for ‘up’ and one for ‘down’; no control input is then required).

For all types of multiple-sequence counter, it is essential to ensure that the
sequence control signals do not change at the instant when an input pulse
occurs (or that both clock inputs are not pulsed simultaneously for those types
that have two pulse inputs). Otherwise the required operating sequence can-
not be specified unambiguously. The design of reversible countersisillustrated
by means of the following example.

Example 3.2

Develop the Gray-code counter of example 3.1 to provide an up/down count-
ing capability. A control signal UP is one when upward counting is required.

Present state Next stafe Next state
(P =1 (UP=0)

O Q@ @ Q Q@ O | @ @ @

o 0 o o o 1 10 0

o 0 1 o 1 1 o 0 o

o 1t 1 o 1t ofto o0 1

o 1 o 1 1 0o |o 1

11 0 [ B o 1 o

1 1 1 1 o 1 1 1 o]

10 1 t 0 © 111

1 0 © o o o |1 o 1

O Qa Qa
— S,
1 [ l 101 J 1 1
A [ U @
(R 11 1 1
Qc
Ly | Al .
1 a an Wl W
Qp Qs Qa
Da=0aQc+0sQc P Dg=0p@c+GaQcUP  Dc=1(0y G5 +0, Qa)UP
+QpQc UP +0, Qc UP +(Qy Og +Qs Q)P

Figure 3.10 (a) State-transition table and (b) flip—flop input maps for example 3.2.
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Solution The modified state-transition table is shown in figure 3.10a, where
UP=0 implies downward counting, of course. Three flip—flops are still
required but the input signals (D,,Dg and D¢) become functions of four
variables since the required next states are now defined by the present state
(three variables) and the control signal (UP). Figure 3.10b shows the required
input maps, which have been drawn so that the upper half compares directly
with the maps of figure 3.9b. Detailed circuit implementation is left as an
exercise for the reader.

3.3.4  Shift registers

This useful ‘building-block’ circuit configuration is conceptually simple. A
suitable number of flip—flops is directly cascaded as shown in figure 3.11. The

[N Qs Qc @

DC)J DOI DOI DOL-l—

qr ak l- aF l— ar
CLOCK:
Qa QB Qc Qo
lV o J Q J Q J @ l
i i ) !.
K a K J K@ K Q

CLOCK

Figure 3.11  Shift registers using D and JK flipflops.

basic property of the shift register is that, after a clock pulse, the (n + 1)th flip—
flop takes on the previous value of the nth, for all flip-flops except the first.
The contents of the last flip-flop will be lost (unless transferred to some other
storage device) and the new contents of the first flip—flop will be determined by
the signal applied to its D input (or to its J and K inputs). In the basic form of
the shift register this is the only option available to the system designer. The
several system applications, therefore, depend on the origin of these inputs;
the possibilities may be categorised and will be discussed in turn.

(@) Constant inputs The flip—flops comprising the register will progressively
take on, under the control of the clock pulses, the value corresponding to the
constant inputs (ones for D=1 or JK =10, zeros for D=0 or JK =01). Notice
that, if JK flip—flops are used, there are two more possibilities. JK =00 causes
the register to fill with the initial value of the first flip—flop whether this be a
zero or a one. JK =11 causes the first flip—flop to change state on each clock
pulse; hence the register takes on the value 101010 and so on. Although of no
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great practical application, this last effect often causes confusion when JK
inputs have inadvertantly been left open circuit (under which conditions many
devices assume the input value one). The main application of a constant input
to a shift register is to leave the register in the ‘all-zero’ state after a serial
transfer of data.

(b) The content of the last flipflop To achieve this, the D input of the first
flip-flop must be connected to the Q output of the last one (or the J and K
inputs of the first connected to the Q and 0 outputs of the last, respectively).
The first flip-flop now takes on the value of the last and the register has
become a complete ring. Any data initially loaded into the register will there-
fore recirulate indefinitely. This property has many applications. For ex-
ample a stored constant may be used repeatedly in arithmetic processing such
as serial multiplication. If one flip—flop is loaded with one and all the others
with zero a ring counter will result having a sequence of states as shown in
figure 3.12. This can be used as a simple form of counter but is also useful as a
multiphase clock-pulse generator.

Or @ QO @
1 o o0 O
0 1 0 0
0 0 1 ©
0 0 0 1

(¢t 0 0 0

Figure 3.12  Sequence of states for a four-bit ring counter.

(c) The inverse of the content of the last flipflop This property is easily
realised by connecting the D input of the first flip—flop to the 0 output of the
last (or the J and K inputs of the first to the 0 and Q outputs, respectively, of
the last). Sometimes known as a ‘twisted-ring’, ‘switch-tail’ or ‘Johnson’
counter, this configuration enables easily decoded counters to be imple-

mented, as shown in the following example.

Example 3.3

Show that a fully decoded octal counter (a counter with eight output lines) can
be realised using only four flip—flops and eight two-input gates. What happens
if the counter is incorrectly initialised ?

Solution Figure 3.13 shows the sequences obtainable by applying com-
plemented feedback to a four-bit shift register. The two sequences are inde-
pendent of each other and between them cover each of the sixteen possible
states once only. Johnson counting makes use of the first of these sequences,
which has an obvious symmetry. Decoding each of the eight states apparently
requires eight four-input gates, but treating the remaining sequence (8 states)
as don’t cares reduces this requirement to two-input gates. Using Karnaugh-
map techniques, it can be shown that the eight states of the first sequence can
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Os Q6 O O Q% & QO O
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Figure 3.13  Sequences obtainable with a Jfour-stage ‘twisted-ring’ counter.

be detected as 0a0p, 0403, 0a0c, OcOp, 0a0p, 0405, OsQc and QcQp. These
reduced terms are valid if, and only if, states in the other sequence do not
occur.

Incorrect initialisation will occur if any set of values, other than one of
those in the first sequence, is entered into the register (perhaps at switch-on).
The system would then cycle indefinitely through the unwanted sequence,
producing associated spurious outputs. If the flip—flops comprising the reg-
ister are of JK type, the counter can be made self-correcting by using an
additional gate, to give J,=0c0p and K = Qp (as opposed to J, = Op and
Ka=Qp). Is is left as an exercise to the reader to verify that this modification
does not interfere with generation of the required Johnson sequence, but will
divert the spurious sequence into the Johnson sequence after a certain number
of counts.

(d) A linear function of the outputs of two flip—flops in the register A shift
register consisting of n cells is, in general, capable of storing any of 2" binary
numbers; that is, it has 2" possible states. In all the applications considered so
far, for a given initial state, it has not been possible to make the register pass
through all the remaining 2" —1 states before returning to its initial state. By
feeding back a linear function (that is, one involving only the exclusive OR
operation) of the states of the last and other suitable chosen flip-flop this
property can be almost achieved. ‘Almost’ because the state 0000. . ., once
entered, cannot be left; the remaining 2" —1 states are entered in an essentially
random order. The circuit, therefore, is of use as a pseudo-random-sequence
generator. The sequence is described as pseudo-random because, after an
interval dependent on the length of the register, the sequence repeats itself
(unlike truly random numbers!). A simple example of sequence generation is
considered in example 3.4 but a detailed treatment is beyond the scope of this
book. An excellent treatment has been produced by Golomb (1967) to which
the reader is referred for more details; the more difficult problem of non-
linear-feedback shift registers is also considered in this work.

Example 3.4

Determine how a maximum-length sequence can be generated by applying
linear feedback to a four-bit shift register.



INTRODUCTION TO SEQUENTIAL SYSTEMS 45

Solution A two-input exclusive OR gate will be required ; one input must be
connected to the last flip—flop of the register (otherwise its effective length
would be reduced). The sequences obtainable by connecting the other input to
the second and third flipflops are shown in figures 3.14a and b respectively.

O Qs O Qo QO O Oc O Qa @5 QG @ Qi O O b
1 1 1 1 1 0 1 0 0 1 1 0 rlI 1 1 1
0 1 1 1 0 1 0 1 1 0 1 1 0 1 1 1
0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 1
1 0 0 1 0 0 0 1 (] 1 1 0) 0 0 0 1
1 1 0 0 1 0 0 0 1 0 0 0
1 1 1 0 0 1 0 0 0 1 0 0
@ 1t 1 npla o 1 0 0 0 1 0
1 0 0 1

@ 1 1 0 0

0 1 1 0

1 0 1 1

0 1 0 1

1 0 1 0

1 1 0 1

1 1 1 0

La 1 11

v
Figure 3.14 Sequences relating to example 3.4.

It can be seen that connection to the second flip—flop produces three inde-
pendent sequences, two of length six and one of length three (or four sequences
if the state 0000 is regarded as a degenerate sequence of length one). Connec-
tion to the third flip-flop produces the required solution, a sequence of length
fifteen. It is left as an exercise to the reader to show that connection to the first
flip—flop also produces a maximum-length sequence. There appears to be no
systematic method of predicting which bit should be used for an n-bit register.
Trial-and-error procedures are usually employed.

(€) An arithmetic function As mentioned in section 3.3.4b, an arithmetic
constant may be recycled and re-used indefinitely. More generally, the con-
tents of the register may be progressively replaced by an arithmetic function
of the previous contents of the register and a number stored in another
register. Very widely used in the early days of digital computing, this technique
is becoming of less importance as digital processors become more and more
parallel in operation due to the availability of relatively low-priced medium-
and large-scale parallel integrated arithmetic processors.

It is evident from several of the applications that an ability to load data into
the register, before any shifting operations, is important. There are many
variations on the ways in which this can be achieved; but two distinct ap-
proaches can be identified. In one, all cells of the register are first set to the
same value, usually zero; appropriate inputs are then applied only to those
cells that are required to contain a value different from the initial one. A
realisation of this approach is shown in figure 3.15a. A pulse on the RESET
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Figure 3.15 Two methods of entering data into a shift register.
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line sets all flipflops to zero; subsequently, a pulse on ENTER allows any of
the inputs A4, B, C and D that are one to set the appropriate flip—flops.

The alternative approach is illustrated in figure 3.15b. Here, a single
ENTER pulse is required during which any of A, B and C that are one will
provide set inputs to the appropriate flip-flops whereas those that are zero
will simultaneously provide appropriate reset inputs and each flip—flop will
be given the correct value regardless of its previous one. The latter approach
requires more gates but allows data to be entered in a single operation. Note
also that in both cases, although the shifting operation is a synchronous one,
the data is entered in an asynchronous manner.

3.3.5 Latches

Latches are temporary data-storage circuits similar in concept to shift reg-
isters but without the facility for shifting data laterally. Consequently, whereas
shift registers may in general have either serial or parallel inputs and outputs,
latches are restricted to both parallel-input and parallel-output operation.
Parallel data may be entered using the techniques described for shift registers.
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3.4 Intuitive design of sequential systems

3.4.1 Introduction to design

Well-established formal procedures are available for the design of both asyn-
chronous and synchronous systems and are described in chapters 4 and 5,
respectively. In some straightforward cases, a design specification can be met
directly by means of an interconnection of counters, shift registers and the
like. The method by which such circuits are produced is not easy to define; the
required ingredients are familiarity with existing systems of a similar but not
identical nature, and imagination. Two examples should illustrate the pro-
cess.

Example 3.5

Design a synchronous sequential version of the binary comparator outlined
in section 3.1.2; the numbers M and N each contain four bits.

M3 My My Mo
1 111 &
S1 01‘_—_') M>N
| LI i —
CLOCK ¥ 3
111 5L )
T T 11 RESET
N3 N Ny No

Figure 3.16 Sequential binary comparator (example 3.5).

Solution One possible approach is outlined in figure 3.16. Assuming that the
data exists in parallel form, shift registers will be required to perform a serial
conversion. The most significant digits must be examined first; if they are
unequal, the relative magnitude of the two numbers is immediately determin-
ed. Therefore M,N, may be used to set a flipflop the output of which indi-
cates that M exceeds N; similarly M,N, can be used to set a second flip—flop
the output of which indicates that N exceeds M. If the most significant digits
are equal, neither flip—flop will be set and, after a clock pulse, the most signifi-
cant digits at the end of the register will be replaced by the next most signifi-
cant. A further comparison will be made, which will result in the appropriate
flip—flop being set if one number exceeds the other. Once inequality has been
detected, as indicated by the setting of the appropriate flip—flop, it must be
ensured that the other flip—flop cannot be influenced by inequalities in less
significant pairs of digits. This can be achieved by means of third inputs to
the AND gates that inhibit operation once the other flip—flop has been set.

If the two numbers are precisely equal, neither flip—flop will be set and the
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AND gate connected to the inverse outputs of the two flip-flops will produce
an appropriate output. A practical realisation might need further refinements
such as a circuit to ensure resetting, data-entry at the required time and the
generation of four, and only four, clock pulses during each comparison.

Example 3.6

Design a sub-system that will divide the repetition rate of an input pulse train
by N, where N is a four-bit binary number.

Solution A counting circuit could readily be designed, using the techniques
of example 3.1, to divide the pulse rate by a single, fixed, value of N. A more
complex arrangement is required if N can take any value. One approach
makes use of a binary comparator, of the type discussed in section 3.1.2,to
compare the output of a binary counter with the present value of N. When
equality is detected, the counter is reset. If the binary counter is driven by the
input pulse train, one reset pulse is produced for every N input pulses; so the
reset pulse is also the required output. A possible arrangement is shown in
figure 3.17. A difficulty can arise with this circuit; if some flip—flops in the
binary counter respond to the reset signal more quickly than others, equality—

INPUT ¥

I 11 1fr

binary equalty
comparator » OUTPUT

binary
counter

l RESET

Figure 3.17  One solution to the pulse rate division problem (example 3.6).

INPUT-

and hence the reset signal itself—will be lost before the remaining flip—flops
are reset. The solution is to use the equality signal either to set a further flip—
flop (which can be reset by the next input pulse) or to trigger a monostable
circuit (which will automatically reset after a chosen delay). In both cases the
effect is to extend the duration of the reset signal so as to allow sufficient time
for all flip—flops in the counter to respond.

The cost of the binary comparator can be avoided by using a counter that
operates in the reverse mode. The number N is loaded into the counter (using
one of the techniques discussed in relation to shift registers in section 3.3.4),
which then counts downwards reaching zero after N input pulses. Zero can be
detected by means of a single OR gate (four inputs in this case), which is con-
siderably cheaper than a binary comparator (but the reverse counter could be
more expensive than a forward one). Alternatively, an up counter could be
used in this mode by loading it with the complement of N and counting
upwards to zero.



INTRODUCTION TO SEQUENTIAL SYSTEMS 49

The intuitive approach (illustrated in examples 3.5 and 3.6) generally pro-
duces a design much more quickly than the more formal methods to be
discussed later. On the other hand, it is all too easy to fail to consider an
important factor. For example, the additional inputs to the AND gates re-
quired to prevent subsequent operation of the flip—flops (figure 3.16) could
easily have been overlooked. Also, intuitive designs rarely use a minimum of
devices; this approach often uses more flip—flops than the theoretical mini-
mum.

The mode of operation of an intuitive design is usually clearly evident from
the circuit diagram; if the design was produced mentally, it can be interpreted
mentally. This is a considerable advantage when testing and fault-finding.
Some formal methods can produce economic circuits of great subtlety whose
mode of operation is not readily apparent.

3.5 Examples

This section contains further worked examples, which provide more details
on counter design, together with two unworked ones. An expanded treatment
of this subject is given by Potton (1973).

Example 3.7

Implement the Gray-code counter of example 3.1 using JK, RS and T flip-
flops.

Solution Consider first the JK realisation. The state-transition table will be
unchanged from figure 3.9a. From figure 3.5b it can be seen that, if JK=10,
the flip—flop output will be set to one and, if JK =01, the flip—flop output will be
reset to zero. Therefore, for each flip—flop, the J input must take the value one
whenever a zero-to-one transition is required and, conversely, the K input must
be one whenever a one-to-zero transition is required. These transitions can be
obtained by inspection from figure 3.9a; for flip-flop A, Jo=0aQsQc and
KA =04050c. Notice that, unlike the D flip—flop, J and K inputs are not re-
quired when the state remains unchanged. For flip-flop B, Js =0,0s0Qc and
Kg =040s0Qc and, for flip-flop C, Jc = 0a0s0c +QaQs0c and Kc =040 0c
+0a080c.

Further use can be made of the flip—flop properties in order to simplify
these expressions. Consider J, =Q,Qs0c, which is used to bring about the
transition from Q,QsQc =010 to Q2QsQc = 110; if the expression for J , were
reduced to QgQc, Jo would become one not only for Q,QsQc =010 as re-
quired, but also for Q,QsQc = 110. For this latter case no change in the state
of flip—flop A is required and J, = 1 merely serves to retain the flip—flop in the
required state (K, will be zero). Even if a transition in 0, were required, this
could only be from one to zero and, provided K, were one, J, =1 would not
inhibit this transition (see last row in figure 3.5b). The simplified expression
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for Jy is therefore satisfactory. The general rule, of which this example is a
specific case, is that when simplifying an expression for J; all Q;=1 may be
treated as don’t cares; similarly all Q; =0 may be treated as don’t cares with
respect to K;. This makes J; and K; independent of both Q; and Q. Application
of this rule reduces the flip—flop input expressions for this example to

Ja=0s0c Ka=0s0c
Je= QAQC K =040c
Je =00+ 008 Kc=0x05+040s

which may be used to realise a suitable circuit.

If RS flip—flops were to be used, the input expressions would be the same
(replacing J by S and K by R) with one important exception. Since RS =11 is
not allowed (unlike JK =11, which produces a transition), the rule for don’t
cares must be modified to ‘all Q; =1 may be treated as don’t cares with respect
to S; except those for which R;=1" and ‘all ;=0 may be treated as don’t
cares with respect to R; except those for which S;=1". This change does not
affect the input terms for this particular example.

If T flip—flops were to be used, 7' must be one when, and only when, a transi-
tion (whether from zero to one or vice versa) is required. As with the other
single-input flip—flop (D type), there can be no don’t cares. Inspection of the
state-transition table (figure 3.9a) yields

Ty =04080c + Q04 0,0c
To=0a0s0c +0r0s0c 3 3
Tc=04080c+04080c +04080c +0a0s0c

which do not simplify.

Example 3.8

Design one decade of a synchronous binary-coded decimal counter; a carry
output is required on the nine-to-nought transition in order to drive further
decades. Use JK flip-flops and ensure that redundancies are used as fully as
possible to achieve an economical circuit.

Solution The state-transition table, including the required carry output, is
givenin figure 3.18a. As values from 10 to 15 inclusive are not used in the BCD
system there are six don’t cares, which will occur in the same cells in all the
flip—flop input maps. Don’t cares will also arise from the JK input properties
as discussed in example 3.7; the location of these will be different for each map.
For clarity, the former don’t cares are indicated by + and the latter by x,
although in minimisation both are treated in exactly the same way. The re-
quired maps are given in figure 3.18b. Note that some cells are don’t cares for
both of the above reasons.

By inspection, J, = K, =1. It is also evident that a carry output is required
when 0.030c0p =1 but use of the don’t-care states reduces the required
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Figure 3.18 State table and flip—flop input maps for example 3.8.

expression to z=Q,0p. To ensure synchronous operation of subsequent
(more significant) decades, the carry signal would normally be gated with the
clock signal. The complete circuit is shown in figure 3.19.

Example 3.9

Design one decade of an asynchronous binary-coded decimal counter. The
circuit is to use (unclocked) T flip—flops that change state on the negative-
going edge (one-to-zero transition) of the input pulse.
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Figure 3.19  Circuit realisation for example 3.8.
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Solution It was shown in section 3.3.2 that an asynchronous binary counter
can readily be produced by directly cascading T flip—flops. Clearly some
additional gating is required to obtain the binary-coded decimal sequence.
Using figure 3.18a, the required triggering conditions for flip—flops B, Cand D
are derived, as shown in figure 3.20a. (Clearly flip-flop A is required to trigger
on all input pulses.)

Qa Qa Qa
A et — emtscsemt——
1 1 1
+ + + + + + 1
OD “
+ + + + + + + + + + + +
Qc
1 1 1 1
[RenRmpm— —_— ——
s Qe Qg
7g Tc o (a)
[ [*% Qn
A ~
1 1 1
+ + 1 + + + +
@
+ + + + + + + + + + + +
@
1 1 1 1
Qs Qg Qe
Qa Qs Qc (b)

Figure 3.20° (a) Required trigger conditions and (b) one-to-zero transitions for example 3.9.

In order to follow, as closely as possible, the simple structure of the asyn-
chronous binary counter (figure 3.7), T should be derived from Q,, Tt from
0O and Tp from Qc. To achieve this, the maps of figure 3.20b are constructed ;
here a one indicates where one-to-zero transitions occur for the flip—flops
indicated, when the counter is operating correctly.

Comparison of the two left-hand maps shows that the required trigger



INTRODUCTION TO SEQUENTIAL SYSTEMS 53

conditions for flip—flop B (T) can be covered by the one-to-zero transitions of
Q, but the one-to-zero transition occurring for Q,QsQcQp = 1001 must be
suppressed. This can be achieved by AND gating Qa with Op; therefore
Ty = 0a0p. The centre maps show that the T conditions for flip—flop C (T¢)
can be directly covered by the one-to-zero transitions of Qg ; therefore Tc = Qs.

The trigger condition for flip—flop D (7p) is not quite so simple. The condi-
tion QaQs0cQOp = 1001 in the map for Tp, is not covered by the one-to-zero
transition of Qc, so an alternative must be sought. Only Q4 covers both condi-
tions required for 7p, so flip—flop D could be triggered from flip—flop A. To
eliminate the unwanted transitions of Q,, T, = Q4 Qp + @aQsQc could be used.
Alternatively one of the required conditions for T, could be derived from Qs
and one from Q¢ by using Tp, = Qc + QaQp. The carry output is obtained as in
example 3.8, but without clock gating of course. A complete circuit is given in
figure 3.21.

Figure 3.21 One possible circuit for example 3.9.

Example 3.10

A memory storage circuit can be formed by cross-connecting a two-input
AND gate and a two-input OR gate. Find the truth table for this circuit.
Using the inverter-growing technique of chapter 2, show that this prototype
circuit can be transformed into either a NAND gate RS flip—flop or a NOR
gate RS flip-flop.

Example 3.11

Develop the synchronous binary-coded decimal counter (example 3.8) to
permit reversible operation. Remember that, in the ‘count-down’ mode, the
carry output must be produced on the nought-to-nine transition.
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Asynchronous Sequential
Systems

The discussion in the previous chapter has introduced, in general terms, the
concepts involved in both synchronous and asynchronous sequential systems.
It has also been shown that many simple systems of this nature can be de-
signed from a purely intuitive point of view. For more complex systems hav-
ing a larger number of possible operating sequences, the capability of the
intuitive approach rapidly becomes exhausted. It is therefore necessary to
formulate, as unambiguously as possible, the several steps involved first in
analysis and second in design. It is the purpose of this chapter to establish
these procedures in respect of asynchronous systems.

The adoption of a formal approach is no excuse for the abandonment of a
physical insight into the precise requirements of the systems under considera-
tion. No formal method, however refined, can correct for an initial problem
that is specified in an ambiguous or unrealistic manner.

4.1 Basic concepts
4.1.1 General models of asynchronous circuits

In all sequential systems the outputs depend not only on the present values of
the inputs but also on their previous values. The variables in the system that
‘remember’ the past input sequences are the state variables (sometimes called
secondary variables). Consequently, at any instant, the past history of the
inputs, in so far as this is relevant to future operation, is crystallised in the
present value of the state variables.

As explained in section 3.2.1 the property of storage is associated with a
feedback path. A general asynchronous system may, therefore, be represented
as in figure 4.1. Floating subscripts are used to indicate groups of signals.
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Three groups are shown: x;, the input signals; y;, the state variables; and z;,
the output signals. Two combinational circuits are shown; one generates the
state variables and one generates the output signals.

Since the state variables are binary quantities, the total number of dif-
ferent states that can be represented by g of these variables is 2% Let there be
p input variables. For every one of the 29 states, all 2? different input combina-
tions can, at least in principle, exist. The state of the system, as defined solely
by the state variables, is generally referred to as the internal state, whereas the
state defined by both the state variables and the inputs is referred to as the
total state. The general model, therefore, has 27 internal states and 2774 total
states.

system l syster'v;
inputs outpu
A input circuit system output circuit T’
{ combinational 5_"’:;; { combinational
i variables ;
_y|  logic) = logic }
d

Figure 4.1 General model of an asynchronous sequential system.

The sequential operation of the system can be regarded as a series of transi-
tions from one total state to another, under the influence of the inputs. The
state variables can be changed only by making an appropriate change of the
inputs.

In many cases, for example, a binary counter, the state variables are them-
selves the required outputs. More generally, the outputs may be associated
with each total state of the system. Figure 4.1 shows how the outputs, which
are combinational functions of the inputs and state variables, may be gen-
erated. There is a theoretical upper limit to the number (r) of distinct output
functions that may be generated. The total number of variables feeding the
output gating is p+¢q (p inputs and g state variables). There are, therefore,
27*4 different minterms from which output functions may be constructed;
since each minterm may be included in, or excluded from, any one output
function, the total number of possible output functions is 22° 4 This includes
two degeneracies (the logical ‘or” of all the minterms = 1, the logical ‘or’ of
none of the minterms = 0). The number of useful functions, therefore, is
2273, Normally, practical systems would use considerably less than this
upper limit.

The model shown in figure 4.1 is quite general; no restrictions are imposed
on the feedback connections other than the requirement of a sufficient (non-
degenerate) number to store the necessary number of state variables. It is often
convenient to localise the storage of the state variables in flip—flops (typically
set—reset type). This leads to a general model as shown in figure 4.2, which may
be regarded as a special case of the more general model given in figure 4.1.

The input circuit is now required to produce 24 signals that form the SET
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and RESET inputs to the g flip—flops used to store the state variables. Notice
that these SET and RESET signals are functions of both the inputs and the
state variables.

Localising the storage of the state variables in this manner is convenient
from a practical point of view when testing and fault-finding. As will be seen
later, it also has the great advantage of completely eliminating static hazards.

system system
inputs outputs
% input circuit state output circuit _z,_—>
(combinafional variables | (combinational
logic) S Q Yi logic)
R Q

Figure 4.2  General model of an asynchronous sequential system using flip—flop storage of state
variables.

4.1.2 Restrictions inherent in the asynchronous approach

The asynchronous models described in section 4.1.1 are ‘self-timed’; that is,
changes in state variables consequent on an input change occur as soon after
the input change as is permitted by the delays inherent in the input circuit
(and the flip-flops in the model of figure 4.2). (Additional delays may some-
times be included ; this does not alter the present argument.)

Consequently some restrictions must be imposed on the manner in which
the inputs are allowed to change. A second change of input variables must not
be allowed to occur before the state variables have settled to the appropriate
value following the first input change. If this were not the case the input gating
would ‘see’ the new input combination at the same time as the old set of state
variables; clearly this could lead to an incorrect state transition. Since com-
ponent tolerances can vary over a wide range, the time between successive
input changes must be somewhat longer than the worst-case delay of the
longest feedback path in the system in order to allow a'safety margin.

Secondly, not more than one input variable may be changed at any one
time (the ‘fundamental mode of operation’). Since absolute simultaneity
cannot be achieved, a change from 00 to 11 must be regarded, if time is
divided sufficiently finely, as a sequence 00,01,11 or 00,10,11. It cannot be
predicted with confidence which sequence will occur and inputs 01 and 10
may well lead to different next states. Hence the state transition is predictable.

In some problems a multiple change of input variables is impossible for
physical reasons (for example, excitation by a moving object of two detectors
that are some distance apart). In other cases the simultaneous change may be
avoided by some operating restrictions (for example, two switches that may
not be operated together). If neither of the above applies, asynchronous tech-
niques should not be used (see chapter 5—synchronous systems).
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4.2 Analysis techniques

4.2.1 The concept of stable and unstable states

It was shown in section 4.1.1 that a system having p inputs and q state vari-
ables has 277 total states. These total states can be divided into two classes—
those in which the system can remain indefinitely (assuming that an input
change does not occur) and those in which the system can remain only trans-
iently. The former are described as stable and the latter as unstable.

Figure 4.3 shows the general model of figure 4.1 as modified by breaking
the feedback connections and substituting hypothetical inputs (y1, y2, ..., ¥,)
that feed the input circuit. The output circuit is not shown since it is not
relevant to this part of the discussion.

The model is now reduced to a purely combinational one specified by

Y1=,f1(x13x27"'axp; ,Vb,VZ,--'a,Vq)
Y2 :fZ(xla x2"'-9xp; Y1sY2,---,Yq)

),llzf;l(x19x27"'axp; ,Vl,J)Z,'--,Yq)

where f] to f, are the g Boolean functions generated by the input circuit. That
is, the values of Y; to ¥, can be determined for all possible inputs given by x,
to x, and y; to y,.

XI
ﬁ. .
input Y

. —>
circuit

Y

Figure 4.3 General model of an asynchronous system with the feedback connections broken.

Of the resulting signals Y; to ¥, two classes may be defined: (1) where Y; is
equal to the postulated value y; for all values of i from 1 to q. (2) where Y; # y;
for any one (or more) value of i. In class 1 the feedback connection could
clearly be replaced without causing any change in the state of the system (this
is a hypothetical argument; there may be practical difficulties in remaking the
connections without causing disturbances). All states in this class are stable
and will exist until a change of input variable occurs.

In class 2 reconnection of the feedback paths would cause at least one of the
assumed values of y; to change to the value of Y;, which in turn could lead to a
change in one, or more, of the state variables; that is, a change of state occurs.
States in this class are unstable since they can exist only for a time less than the
propagation delay t around the feedback loop. The circuit keeps changing
until a stable state is reached. Instability in many engineering aspects is
a disaster to be avoided; in the present interpretation, by contrast, unstable
states are essential as the only means of bringing about transitions from one
stable state to another.
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4.2.2 The excitation map and flow map

This section illustrates the concept of stable and unstable states by means of
an example and introduces the excitation map as a means of predicting the
possible sequences of states. The example chosen (figure 4.4) has two inputs
and two state variables (p=¢g=2).

There are, therefore, four internal states and sixteen total states. Derivation
of outputs will be considered later.

Figure 4.4 Details of the example discussed in section 4.2.2.

In the general model, all Y; depend on all x; and all y;; in this particular
example, Y, depends on x;, x5, y; and y, but Y does not depend explicitly
upon y,. But y,, of course, still plays an important part in the sequential
behaviour of the system.

Boolean expressions for Y; and Y, in terms of x;, x;, y; and y, may now
be written assuming, at this stage, that the feedback paths are not connected

Yi=Xix2+Xx2y1+X1y1
Yo=x1V1y2+X1X2+ X2y

The Karnaugh map representing these functions (figure 4.5) is the excita-
tion map. For convenience,both Y, and Y, areindicated on the same diagram.
The value of Y, is to the left in each cell and the value of Y, to the right.

It is conventional to use the columns of the map to represent the inputs x;
and the rows to represent the state variables y;. Therefore, a change of input
implies a change of column while a consequential change of internal state
implies a change of row. Each cell of the map represents a total state. Any
attempt to mix inputs and state variables in rows or columns leads to confu-
sion because changes in input or internal state appear as diagonal moves
across the map.

The stable states in figure 4.5 will now be identified. On the top row



ASYNCHRONOUS SEQUENTIAL SYSTEMS 59
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Figure 4.5  Excitation map where each cell contains the values of Y, Y.

y1y2=00 so all cells containing 00 (that is, Y, Y, =00) will represent stable
total states. Similarly on the second row y; =0 and y,=1so0 Y,;Y,=01
denotes stability; proceeding in this manner all the stable states may be
identified. These are shown, numbered arbitrarily, in figure 4.6. The circle
round the number is a widely used convention indicating that the state is a

stable one.
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e e —

®
O]

©O)

Y2

N

®|®
®

=

X2

Figure 4.6 Map showing the stable states.

The remaining total states in figure 4.6 are, inevitably, unstable. The system
cannot remain in any of these states and must respond by moving within the
same column until a stable state is located. Transitions between columns are
not permissible because the input variables are not allowed to change until
a stable state has been reached. The direction of motion within the column
is determined by the unstable variables. For example, the top cell of the second
column of figure 4.5 indicates instability with respect to y;. The system will
respond in such a manner as to establish equality between y, and Y,; if
this can be achieved without changing Y (as is normally the case in good
design) there is no reason why a change in Y, should occur. Consequently the
system responds by moving to stable state 7. This is indicated on the map by
entering 7 without a circle (unstable state 7) in the top cell of the second
column. Similarly the top cell of the third column indicates instability with
respect to y,, leading to a transition to stable state 3. Proceeding in a similar
manner the map is completed as shown in figure 4.7.

This map (the flow map) now summarises the entire sequential behaviour
of the system. For example, if the inputs are zero (x;x, = 00) the system must
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be in stable state 1 since this is the only stable state for this input condition.
If x, is now changed to one the system will respond by moving to stable
state 7 (y,y,=10) via unstable state 7. If x, is now also changed to one the
system will move to stable state 6 (y,y,=11) via unstable state 6. In this
manner the sequence of states for a given sequence of inputs can be deter-
mined. Remember that double changes of input variable are not allowed.

X4

Ol713|®

1{s|®®
y2<1®@8

1®6y1

X2

Figure 4.7 Complete flow map for the example.

4.2.3 Flip—flop input maps

The sequential behaviour summarised in the map of figure 4.7 may be real-
ised using a circuit in which the two state variables are stored in set-reset
flip—flops (figure 4.8). The detailed design procedure is given in section 4.4.7,

Xy Po-

S Q@ N

2

J| U t])

Q)
T

DD

Figure 4.8 Example using flip—flop storage.

By inspection of figure 4.8
SET y;=%1x, RESET y;=X;%,
SET y,=x;x; RESET y,=X;X;+X2)1
These functions may be represented in map form (figure 4.9).
In the figure R denotes RESET and S denotes SET. Notice that, when the

flip—flop concerned is in the zero state, an optional reset signal r can be applied
if desired and similarly s can be applied when the flip—flop is in the one state.
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Figure 4.9 Input maps for (a) the y, flipflop and (b) the y, flipflop.

This is because these entries have no effect on the flip—flop state and, as will be
discussed later, represent don’t-care conditions. The capital letters represent
a defined change in the state of the appropriate flip—flop. Consequently any
cell that contains neither an R nor an S on either of the maps represents a
condition where no change is demanded, that is, a stable state. So the stable
states may beidentified and (arbitrarly) numbered as in figure 4.6. Transitions
from the remaining (unstable) states, as shown in figure 4.7, may be predicted
using figure 4.9. For example, the total state x;x,y;y, =0100is a SET condi-
tion for y; and therefore indicates a transition to stable state 7; similarly, the
total state x;x,y1y, =0011 is a RESET condition for both y, and y, and so
leads to stable state 1. This notation follows that used by Sparkes (1969).

Note that, in the general feedback model, all state variables Y; depend on
all the inputs x; and all the feedback signals y;. In the flip—flop model this
still applies but the feedback from Y; to y; is inherent in the ith flipflop. In
particular cases all dependencies may not be required. In figure 4.4, Y, did
not depend explicitly on y,. This results (figure 4.8) in SET and RESET
conditions for Y, that are independent of both y, and y,.

4.2.4 Output gating and state-transition diagram

The discussion so far has been concerned with the sequential behaviour of the
internal states. A simple example of an output circuit will now be examined.
Note that, even with only two inputs and two state varlables the total
number of distinct non-degenerate output functions is (22 —2)=65534
(section 4.1.1). This number includes outputs involving both stable and un-
stable states. Outputs derived from stable states are levels that remain un-
changed until the next state transition; outputs derived from unstable states
are brief pulses that exist only for the duration of the unstable state and are
not normally useful in practice. .

The present example has eight stable states. If only these are used to gener-
ate outputs the number of distinct functions becomes (2% —2)=254. By way
of illustration two output circuits only will be considered (figure 4.10).
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Figure 4.10 Example of a simple output circuit.

It is of interest to determine these outputs in terms of the stable states in
figure 4.7.
These functions may be represented on a single map (figure 4.11).

X1
P

00] 00|00 |00
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00| 00 | 00 | OO
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Figure 4.11  Karnaugh map for the output functions. Each cell represents z,z,.

Comparing figures 4.7 and 4.11, it is evident that output z, is one in stable
states 5 and 6 while output z, is one in stable states 3 and 4.

The information contained in the flow map (figure 4.7) and the output map
(figure 4.11) may usefully be combined in a single diagram known as a
state-transition diagram (figure 4.12). The notation required for an asynchron-
ous system follows the model described by Moore (1956).

00 00

o1 1

Figure 4.12  Srate-transition diagram for the example.
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Each circle represents a stable state. The number in the circle preceding
the oblique stroke is the (decimal) number assigned to the state. The binary
numbers after the stroke indicate the values of the outputs (z; and z; in
this case) associated with that state. An output derived from an unstable
state would be associated not with a particular state but with a state transi-
tion as described by Mealy (1955).

The arrows indicate state transitions together with the input value (x;, x,)
that causes the transition. An essential feature of asynchronous circuits is
the arrow returning to the state (usually called a sling) indicating the input
combination for which that state is stable.

State-transition diagrams will be found useful later as an intermediate
stage in converting verbally specified design problems into tabular form,
which is required for the subsequent synthesis procedure.

4.3 Races and hazards

4.3.1 Races

The discussion so far has included only a brief mention of the part played by
propagation delays in relation to state transitions. Since the timing of asyn-
chronous systems relies solely on these inherent delays, difficulties can arise
when two or more signals that have travelled along paths having different
delays are combined. In some cases the subsequent state of the system
can depend on which of these signals arrives first, that is, which one wins the
‘race’.

Races that can lead to a next state differing from that predicted by the
idealised theory are described as critical. Those that cannot lead to a false
state are non-critical. Certain specific types of race condition can be identified;
these are generally referred to as hazards (because of the hazard of mal-
operation) and have been further categorised as static, dynamic and essential.
Each will now be considered in turn in more detail.

Although not mentioned in the original discussion, the first column of
figure 4.5 shows a non-critical race. Total state x,x,y,y,=0001 is unstable
with respect to y, and therefore brings about a direct change to stable state 1
(see figure 4.7). A similar argument applies to total state x;x,y;y, =0010.
Total state x;x,y,y, =0011 is unstable with respect to both y, and y, and
therefore a change of both must occur. Due to differing delay times, one must
change marginally before the other, giving a transition to either of states
x1x,¥1¥2=0010 or 0001; both of these states lead directly to stable state 1
and so the final state is unambiguous even though the route by which it is
reached cannot be predicted without a detailed knowledge of the delays
within the system.

Figure 4.13 shows the excitation and flow maps for a system having a
critical race (and also several non-critical races).
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Starting from stable state 1, if x, is changed to one, the system moves to a
total state that is unstable with respect to y, thereby predicting a change to
stable state 2. If x; is now changed to one, the state changes unambiguously
to stable state 5; changing x; back to zero initiates a critical race. The state
marked with a question mark in figure 4.13 is unstable with respect to both
y1 and y,. In the unlikely, if not impossible, case of both state variables
changing simultaneously, the system will move directly to stable state 2. If
Y, changes first, a transition to stable state 3 occurs. Since this is a stable
state no further change occurs. Conversely, if Y; changes first, a transition to
unstable state 2 occurs, followed by a transition to stable state 2. Clearly the
final stable state depends on the outcome of the race between Y, and Y.

Xy x
st et
oo|ot]|10ofo ®la2]5]|4
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ye ye
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00| 0110 |00 12 [®] 4
——— —_—
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Figure 4.13  Excitation map (a) and flow map (b) for system having a critical race.

Such unpredictable behaviour, of course, is undesirable in a practical
system. It is not even useful as a generator of random numbers, since a given
realisation would have a marked tendency towards one of the stable states.
Another realisation using components having different delays (due to produc-
tion tolerances) might tend towards the other stable state. Good design,
therefore, necessitates the avoidance of critical races; further consideration
will be given to this later.

Figure 4.13 also demonstrates a further effect that can lead to mal-opera-
tion. Although not strictly a race condition its discussion is appropriate here.
Consider stable state 5. If x, is changed to zero, a state that is unstable with
respect to y, is entered. This causes a change to the top cell of the column,
which is unstable with respect to y,. Stable state 4 is reached ultimately, but
after three transitions instead of one. Note also that, during these three
transitions, y, has changed to zero and back again. This effect (a multiple
transition) is not normally harmful but the needless change of y; could lead
to trouble if a counting circuit of some kind is fed from this signal.

The possibility also exists of producing an excitation map in which all the
cells in one column are unstable. This gives rise (for the appropriate input
combination) to continuous oscillation between the various internal states.
This is not normally desirable but could be used as a (poor-quality) oscillator.
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4.3.2 Static hazards

Although normally discussed in the context of sequential systems the static
hazard is purely a property of combinational-logic circuits. It is only when the
combinational circuit containing such a hazard forms part of a sequential
system that serious mal-operation is likely to occur. :
Consider the combinational circuit shown in figure 4.14. By inspection

Y=X1X2 +X2X3

Therefore if x;x,x3=111, Y=1. If x, is now changed to zero, Y should
remain at one. This simple argument neglects the extra time delay imposed
by the inverter; the consequence of this delay is that the arrival of a one
(due to X,) at the lower AND gate occurs after the removal of the one (due
to x,) at the upper AND gate. During this brief period, Y changes to zero
and back again. The defining characteristic of a static hazard, therefore, is
the occurrence of a fleeting change in a variable that, ideally, should not
change at all. The delay of a typical inverter could be only a few nano-
seconds so the spurious pulse would be quite narrow—difficult to detect,
in fact— and unlikely to cause spurious operation of a device actuated by the
circuit. In a sequential circuit, due to the presence of ‘memory’, the spurious
pulse can lead to a false state transition and hence can be ‘remembered’
indefinitely.

If the circuit of figure 4.14 is made into a sequential one by connecting
input x; as a feedback signal, the excitation equation becomes Y=x1x,+
%,y, giving excitation and state maps as shown in figure 4.15.

Starting in state 5, a change of x, from one to zero should cause a direct
transition to state 6. From the excitation map it can be seen that this involves
a ‘switching-off” of the prime implicant x;x, and a ‘switching-on’ of the
other prime implicant X,y. If this latter term is delayed (in this case by the
inverter), the consequent static hazard takes the system to state 3. Since this is
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Figure 4.14 Combinational circuit that demonstrates a static hazard.
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Figure 4.15 (a) Excitation map and (b) flow map for the system that contains a static hazard.
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a stable state, no further transitions occur and a spurious final state has been
reached.

For clarity the static hazard has been explained on the assumption of
stmilar delays for each gate. The unequal propagation times arise because
of the presence of an inverter, which introduces extra delay in one path.

Static hazards can also occur in circuits that have apparently equal path
lengths for all signals. In this case the differential delays arise from production
tolerances of the individual gates comprising the various paths.

The static hazard can be combatted by introducing additional delays (in
this case, to the term x;x,) using either resistance—capacitance networks or
an even number of inverters. More satisfactorily, the effect can be entirely
eliminated by the inclusion of extra terms in the combinational logic. The
term required in the present example is shown dotted in figure 4.15a; it is a
redundant prime implicant from the minimisation point of view but serves,
in the present example, to ‘protect’ the transition from stable states 5 to 6
by generating a term that remains at one throughout the transition. This
extra term, of course, has no other effect on the sequential behaviour of the
system. In general, hazard terms should be included in the combinational
expression to ‘cover’ all required transitions between prime implicants.
The complete circuit for the hazard-free version is given in figure 4.16.
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Figure 4.16  Circuit with additional gate ro eliminate the static hazard.
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4.3.3 Dynamic hazards

The dynamic hazard is also a phenomenon of combinational logic that leads
to mal-operation primarily in sequential systems. The static hazard arises
as a consequence of the existence of two paths of different delay time. The
dynamic hazard is an extension of the same concept and involves paths of at
least three different delays. The effect can be regarded as a static hazard
combined logically with the input change that causes the static hazard. If
these occur at different times, the hazard manifests itself as a multiple change
in the combined signal. More precisely, a signal that ideally should change
once (that is, from zero to one or vice versa) actually changes three times (for
example, from zero to one, back to zero and finally to one again). Higher-order
effects, due to additional paths of differing delay, can give rise to five or more
changes (always an odd number if the final value is to be correct). As with the
static hazard, the effect is not normally troublesome in a purely combina-
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tional circuit but can lead to mal-operation of an associated sequential
system.

Unlike the static hazard, no universal means of elimination exists for
dynamic hazards. Since dynamic hazards are the result of multiple path
lengths, which themselves arise from complex factoring procedures, it is good
practice to use the least possible number of gate delays per path for all paths
and to avoid complex factoring. In view of the part played by static hazards
in generating dynamic hazards, elimination of static hazards in the first
place is clearly helpful in avoiding dynamic ones. In fact it can be shown
that, for two-gate-delay logic at least, elimination of all static hazards also
avoids dynamic hazards. A thorough treatment has been given by McCluskey
(1965).

4.3.4 Essential hazards

Unlike static and dynamic hazards, the essential hazard is associated solely
with sequential systems. As a further contrast, the essential hazard is an
inevitable consequence of certain specified sequences of states and cannot
be avoided by changes in logic design.

The flow-map sequences characteristic of essential hazards are shown in
figure 4.17. For these patterns to occur, a minimum of one input and two
state variables is required. Of course, similar patterns can arise for more
complex systems, in which case the patterns are embedded in larger maps.
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Figure 4.17 Flow-map sequences characteristic of essential hazards.

The characteristic feature is that if, starting in state 1, one change of input
variable is made, state 2 is reached. If two further changes of input variable
are made (that is, a total of three changes), a different state, namely state 4, is
reached. During hazardous operation of the system a single input change
causes an immediate transition from state 1 to state 4. The effect is primarily
a race between the input change and the state-variable changes as will be
seen shortly. Clearly the above characteristic pattern cannot be obtained
with less than two state variables.

Note that figure 4.17a shows an essential hazard with respect to all stable
states whereas figure 4.17b shows an essential hazard only with respect to
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state 1. In general it is necessary to test all stable states with respect to all
input variables in locating essential hazards.

The master—slave flip-flop (figure 4.18) is a widely used circuit that demon-
strates an essential hazard. Analysis (which will be left as an exercise to the
reader ; the required method is indicated in section 4.4.8) shows the flow-map
to be as shown in figure 4.17a.

master slave
x
R Q R Q

o

Figure 4.18 Master-slave flipflop.

Assume that the system starts in state 1 and x then changes to one. Because
of the crossed-over feedback connection, the one is applied to the SET input
of the master flip—flop causing a change of y, to one; that is, state 2 is reached.
Since x =1, the second pair of AND gates is blocked and no change in the
slave flip—flop occurs. When x reverts to zero, its inverse permits the slave
flip—flop to take the value one, following the master, that is, state 3. Finally
when x becomes one again, the master flip—flop is reset since y, is now one,
and the slave is prevented from changing by the inverse of x.

The above-described normal operation of the system is based on the
assumption that the output of the inverter changes before the master flip—fiop,
following a change in x. If the change in the inverter output should follow the
change in y,, the new value of y, will immediately be assumed by the slave
flip—flop. This corresponds to a direct transition from state 1 to state 4 and
is not the required state transition.

To ensure correct operation of the system, it is necessary to include delays
in the appropriate parts of the system, thereby permitting the required signal
to win the race. If the system is to be produced as an integrated circuit, it is
possible to obtain the required relative propagation times by appropriate
doping of the various areas of the chip during manufacture.

4.4 System design
4.4.1 Introduction to synthesis

So far, analysis of asynchronous systems has been considered together with a
discussion of the conditions under which spurious operation may occur.
Design techniques based on the methods of analysis will now be developed
ensuring (as far as possible) that all spurious modes of operation are avoided.

The first, and often most difficult, part of the design process is to establish
precisely the problem to be solved. This may sound rather trite but, partic-
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ularly in large systems, it is very easy to overlook a particular, perhaps
uncommon, operating sequence until very late in the design process or even
until testing a completed system.

Of course the general nature of the problem to be solved is known from
the first stages but the precise specification must be kept under constant
scrutiny. The manner in which the problem is specified can vary widely.
Often the problem is described verbally as a sequence of required operations.
When the asynchronous system is to be part of an electronic signal-processing
system, the specification could be a set of possible input waveforms together
with the required outputs (a timing diagram).

In all cases the requirement is to obtain a flow table that has the minimum
number of rows and indicates all state transitions and outputs required to
meet the specified problem. Row minimisation will minimise the number of
internal variables, and so will usually minimise the amount of logic required.
In straightforward cases this table can be written down directly, but often
construction of a state-transition diagram is a useful intermediate step. Once
the state-transition diagram or flow table has been constructed the design
process of row minimisation becomes a relatively automatic procedure.
The first step depends on a well-defined problem and, to some extent, the
intuition and experience of the designer.

The methods to be described become excessively unwieldy when applied
to very large systems. In this case, a flow chart may be required to specify
all required operations (see chapter 5 for further details). Partitioning of the
total system using this, or some other, approach can usually produce a
‘sub-system’ specification having a manageable number of inputs and states.
The following procedures are suitable for such sub-systems.

4.4.2 Construction of the primitive flow table

An example will now be given of the derivation of a state-transition diagram,
and hence flow table (or map), from a verbal problem specification. It is
required to count the number of people entering or leaving an exhibition.
Two light beams are to be used, interruption of each of which generates a one.
The beams are sufficiently close together for it to be assumed that during
entry or exit a normal person will, at some time, interrupt both beams. Two
outputs are required, (to drive electromechanical counters)—one for ‘entries’
and one for ‘exits’.

The sequence of interruption will clearly define the direction of motion;
the two sequences are 00,01,11,10,00 and 00,10,11,01,00. A trivial solution
is immediately apparent since it is necessary only to distinguish 01 or 10
following 00 to determine which of the two sequences is involved. Such an
approach would lead to a highly unreliable system since spurious interrup-
tion of either beam would immediately generate a spurious output. A more
‘secure’ solution would be obtained by requiring all three ‘non-zero’ combina-
tions to occur, in one of the permitted sequences, before an output is gener-
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Figure 4.19 Preliminary state-transition diagram for the example (section 4.4.2).
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ated. A state-transition diagram meeting this specification is given in figure
4.19, where the notation of section 4.2.4 is retained. This diagram is not
complete since allowance has been made for the two required sequences but
not for any spurious inputs. A successful design can only be produced if, at
this stage, proper allowance is made for all conceivable spurious input
sequences. It is reasonable to assume in a problem of this kind that a simul-
taneous change of both detectors will not occur but spurious movements
could give rise to several other variable changes. For example, someone could
interrupt the first detector and then retreat, giving a return path from state 4
to state 0. A complete state diagram allowing for all possible single-input
changes is given in figure 4.20.

The information contained in figure 4.20 may now be transferred directly
to a primitive flow table, figure 4.21.

The flow table is said to be primitive, since it contains only one stable state
per row. All flow tables constructed directly from the problem specification
are primitive in this sense; later it will be shown how such tables can be
reduced by including more than one stable state in each row.

In many cases the verbal problem specification is related to a waveform,
or timing, diagram for the required system. For example, figure 4.22 shows
the waveforms relating to a certain pulse synchroniser. An output pulse z is
required coincident with the first ‘reference’ pulse x; after the occurrence of
an input pulse x,. It is assumed that x, pulses, when they occur, are delayed
slightly with respect to the x; pulses. In problems of this kind it is important
to ensure that the waveform diagram indicates all required operations; the
design then proceeds on the strict assumption that these are the only possib-
ilities.
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Figure 4.20 Complete state-transition diagram for the example (section 4.4.2).

Inputs (xqx2) Outputs
00 01 11 10 21 22
© 1 - 4 0 0
o2 - 00
- 1@ 3 00
0 - 2@ 10
6 -5@)] oo
-60 4 c 0
0® 5 - 0 1

Figure 4.21  Primitive flow table for the example (section 4.4.2).
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Figure 4.22 Waveform diagram for the pulse synchroniser.

By allocating stable states for each input/output combination, as shown
infigure 4.22, a primitive flow table may be written down directly (figure 4.23).
The seven states shown represent the minimum number required. The ‘brute-
force’” approach would be to allocate seventeen different states and then to
apply the techniques to be described in the next section to eliminate redun-
dant states. It is usually possible to eliminate most, if not all, of the redundant
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states by inspection before constructing the primitive flow table. Care must be
taken not to go too far; states 1 and 5 appear to be the same at first sight but
state 1 is followed by state 2 and state 5 by state 6 for the same input x;x, =10

Inputs (x4 x2) Output
00 01 11 10 z
®» - - 2 o
1 - 3@ 0
-4 - 0
5@ - - 0
® - - s 0
t -7 ® 1
-4 @ - 1

Figure 4.23  Primitive flow table for the pulse synchroniser.

and so they cannot be equivalent. If in doubt, allocate an extra state. The
reduction procedure will detect any redundant ones.

4.4.3 Equivalent state detection

Having constructed a primitive flow table from the problem data (an ill-
defined procedure depending on the nature of the problem itself), the re-
mainder of the design process is relatively automatic. It is always possible to
produce an operational circuit, but certain ad hoc decisions may have to be
taken, which means that a truly minimal implementation cannot always be
guaranteed.

The first stage in processing the primitive flow table is to ensure that the
number of stable states (that is, the number of rows) is the least required to
meet the required problem specification. If this is not the case, one (or more)
of the stable states must be redundant; that is, it has exactly the same proper-
ties as one of the other stable states and is therefore not required.

More precisely, equivalence of states can be defined by three rules.

(1) The stable states must be in the same column of the table; that is, they
must be stable for the same combination of input variables.

(2) All the outputs associated with the stable states must be the same.

(3) All the next states, as specified by the unstable states associated with
each allowable input combination, must be the same. Note that, as a
consequence of rule 1 above, the allowable input combinations
(avoiding multiple change of variable) will be the same for the stable
states under consideration.

These three rules can now be applied in turn to all pairs of stable states in
the primitive flow table. Rules 1 and 2 are unambiguous, but unfortunately
adifficulty can arise with rule 3. Next states that apparently differ may become
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equal as a consequence of the detection of other equivalent states. Conse-
quently the equivalences that are discovered can depend on the order in
which comparisons are made. Furthermore, some of the next states may not
be specified (see section 4.4.5); in this case it is acceptable to assume equival-
ence between a given next state and a don’t care. Rule 3 may be modified to
allow for these facts.

(3) All the next states, as specified by the unstable states associated with
each allowable input combination, must be the same, or equivalent or
unspecified.

Figure 4.24 is a primitive flow table that includes examples of all types of
equivalent stable states.

Inputs (x4 xp) Output
00 01 11 10 2
2 -5 0
1@ 3 - 0
-100 4 1
1 - 30 1
1 - 60® 0
- 7®. 28| o
1 @ 9° - 0
410
———7—@3—5———9—
12 @ #n°- 1
—@«91—(@—4———1—
"o~ 13 1
2 - 3® 1
4

Figure 4.24 Primitive flow table showing equivalent-state detection.

State 1 cannot be equivalent to any of states 2 to 11 as a consequence of
rule 1. States 1 and 12 satisfy rule 1 but not rule 2 and are therefore not
equivalent. Continuing the comparison of all possible pairs of states it will
be found that 3 = 11 since all three rules are satisfied directly. Row 11 is there-
fore struck out and 11, wherever it occurs as an unstable state, is replaced by 3.

As a consequence of this, 14 becomes equivalent to 10; this equivalence is
dependent on the equivalence of 3 and 11. One final difficulty can arise,
illustrated by comparison of 5 and 8. These are equivalent except for the
differing next states (6 and 9) for input x,x,=11; comparison of 6 and 9
shows that these states are equivalent provided 5=8. This circular argument
is resolved by noting that, provided none of the possible equivalences involved
can be shown to be invalid, all may be regarded as self-consistent and there-
fore allowable. Hence 5=8 and 6 =9. The reduced form of the primitive flow
table now has ten rows.
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It will be realised that, in view of the difficulties associated with the applica-
tion of rule 3, systematic detection of all redundant states in complex systems
is not easy. As an aid, the implication chart, which detects ‘implied’ equival-
ences as discussed in the previous paragraph, has been developed by Paull
and Unger (1959).

The method involves tabulation of all pairs of states that satisfy equivalence
rules 1 and 2. Of these, some will satisfy rule 3 directly giving an immediate
equivalence, while others will depend on one or more implied equivalences.
Initially all implied equivalences are recorded regardless of their validity.

All implied equivalences are then examined in turn by means of the cor-
responding cell on the chart. As soon as any one of the implied equivalences
is found to be invalid, the possible equivalence of the two states under com-
parison can be ruled out. As this procedure involves a continuous updating,
several ‘passes’ through the chart may be made before a stage is reached where
no further changes can be made. All implied equivalences that survive this
procedure can now be regarded as valid. The implication chart for the flow
table of figure 4.24 is given in figure 4.25. Note that only half of the square
chart is required, since comparison of n with m does not differ from compar-
ison of m with n.

state number|
2| x
3 x X
4lx x X
5lx X X X
6l x X x X x
7|X 39 X X x X
8|x X X X 89 X X
9|Xx X X X X 58 X X
10X X X X X X X X X
"nx x v X X X X X X
2]Xx X X X X X X X X X
BX X X WX X X X X X X X
MIX X X X X X X X X 31 X X X
1.2 3 4 5 6 7 8 9 10 11 12 13

Figure 4.25 Implication chart. \/ denotes unconditional equivalence; x denotes non-equivalence
on account of rules 1 and/or 2; nym denotes conditional equivalence.

4.44 Merging

Using the techniques outlined in the previous section, a flow table having
the minimum required number of stable states can be obtained. The table is
still primitive in the sense that the number of rows—that is, required internal
states—is equal to the number of stable states. It is the purpose of this section
to examine the conditions under which one or more pairs of rows may be
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combined leading, hopefully, to a reduction in the number of state variables
required. Of course the number of state variables required decreases (by one)
only when the number of internal states is reduced to less than the next lower
power of two (otherwise the number of don’t-care combinations is increased).

The process of combining rows in this manner is known as merging.
Merging is quite distinct from equivalent-state detection and should not be
attempted until all redundant states have been eliminated. The problem is
to find all pairs of internal states that may be represented by the same com-
bination of state variables without, in any way, changing the sequential
behaviour of the system. This is possible if, and only if, the states occurring
in each column are the same, either stable or unstable (or don’t cares), for
the two rows under examination. It follows that two rows satisfying this
condition must have their stable states in different columns; otherwise, as all
equivalent states have been eliminated, they could not be the same. When
merging two rows, stable states take precedence over unstable ones. Note
that the outputs need not necessarily be the same.

By way of illustration, the primitive flow table of figure 4.21 will be used.
The first and second rows satisfy the criterion for mergeability. On merging,
the first row becomes

0024

that is, stable and unstable state 0 have combined to give stable state 0.
State 1 has been combined similarly and unstable states 2 and 4 have com-
bined with don’t cares. Starting in state 0 a change of input to x;x, =01
causes, exactly as before, a change to state 1. This is now a change of total
state but not of internal state, since the change by way of unstable state 1 has
been eliminated. Transition to stable states 2 and 4 can still occur as usual
by way of the appropriate unstable state. Note that the merged rows inevit-
ably contain entries in all four columns. This does not mean that a direct
transition from state 0 to state 2 by way of unstable state 2 is possible; the
restriction on multiple-input changes still applies, of course.

Inspection reveals further possible mergers in figure 4.21 and the next stage
is to check systematically for all possibilities. Unfortunately, it is not normally
possible to make use of all available mergers. For example, the first and fifth
rows of figure 4.21 are mergeable but the first row cannot be merged with
both the second and the fifth. This is because merging the first two rows
assigns unstable state 2 to the don’t care in the first row whereas merging the
first and fifth rows assigns unstable state 5 to this don’t care. Either is per-
missible but clearly not both. The general rule that can be inferred from the
above argument is that if row a is mergeable with row b and also with row ¢
then a, b and ¢ can be merged (a three-way merger) if, and only if, row b is
itself mergeable with row c. Furthermore, although rows with differing out-
puts can be merged, choosing those with the same outputs reduces, or even
eliminates, the need for an output circuit.

Selecting the best set of mergers is helped by the use of a merger diagram
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(see figure 4.26) that shows pictorially all possible mergers. The solid lines
indicate mergeable pairs of states having the same outputs (output-consistent
pairs) and dotted lines indicate those where the outputs differ. A multiway
merger is possible only when all members of the group of states under
consideration are mergeable with all others. In the present example, therefore,
state 0 is mergeable with 1 or 4 but not both. State 1 is mergeable with both 2
and 3, while 4 is mergeable with both 5 and 6. Note, however, that if these
three-way mergers are chosen, then state 0 is no longer mergeable with either
1or4.

Figure 4.26 Merger diagram.

The merger diagram does not provide automatically a best set of mergers;
it merely allows the various possibilities to be seen more clearly. In the present
example the best solution is to choose the two three-way mergers and leave
state 0 unmerged even though this involves making output-inconsistent
mergers. If output-inconsistent mergers were not allowed, only two two-way
mergers would be possible (for example, 0 and 1, 4 and 5). This would lead
to a five-row merged flow table compared with the three-row table of figure
4.27, where the three-way mergers are used. The latter procedure requires
one less state variable. If output-inconsistent mergers are used it is not con-
venient to indicate the outputs on the merged flow table, although some
writers do this; see, for example, Unger (1959). The required outputs can
still be obtained by reference to the primitive flow table and generated by the
output circuit, as will be shown later.

In general, higher-order mergers are possible but a four-way merger is
unlikely in a two-input system. This is because a complete row of four stable

Inputs (x;x;)

00 o1 11 10
© 1 — 4
0 O @ 0
v 8 3

Figure 4.27 Merged flow table.
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states would be produced, any of which could be entered via the appropriate
unstable state. Exit from this row would be impossible since no input com-
bination could lead to an unstable state that gives rise to an (internal) state
transition. Occasional applications of this property can be found—for
example, an electronic combination lock, which, once a false combination
has been entered, cannot be reset without switching off the power. Normally
the effect is to be avoided.

A four-way merger, characterised by mergeability of all pairs of states
within the group, would be useful in reducing a system having three or more
inputs, and so on for higher-order systems. A four-way merger is recognisable
from the merger diagram as a completely connected four-node graph; that s,
connections exist between all pairs of the four states concerned.

For large systems, a chart similar to the implication chart may be used to
ensure that all pairs of states are checked for mergeability; cell entries would
indicate unmergeable pairs, output-consistent mergers or output-inconsistent
mergers. The selection of a best set of mergers may also be tackled using a
variation of Petrick’s method (see section 2.3.6).

Following Petrick it is possible to write a Boolean equation covering all
possible combinations of mergers including non-optimal ones. In practice
the non-allowed combinations tend to be fewer than the allowed ones and
hence easier to treat. In figure 4.26 all possible mergers have been lettered to
facilitate reference. Inspection shows that, if a is chosen, b, c and d are not
allowable; also if 4 is chosen, a, f and g are not allowable. In Boolean terms
this statement becomes

alb+c+d)-bla+f+9)
which on simplification using the usual theorems becomes
ab+afg+bed
This means that either a and b, or ¢ and f and g, or b and ¢ and d must be
omitted. Since the first term is least restrictive this would be selected, leaving
mergers ¢ to h inclusive as acceptable.

This procedure has automatically included output-inconsistent mergers.
If such mergers are not acceptable, at any price, they should be excluded
initially. Note that, if there is more than one minimal selection of mergers,
this method will indicate them all. It would then be possible to select the
combination (if such exists) that involves the minimum number of out-
put-inconsistent mergers.

It is worth recalling that, if a given merger does not reduce the number of
internal states required to less than the next lower power of two, no reduc-
tion will be made in the number of state variables required; the result is
merely an increase in the number of unused state-variable combinations.

In this case consideration of the output circuit required may suggest that
one or more output-inconsistent mergers should not be made.
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4.4.5 Incompletely specified flow tables

The detection of redundant states is further complicated in the case of in-
completely specified flow tables. Flow tables for asynchronous systems even
when ‘completely specified’ invariably contain unspecified next states in the
columns corresponding to prohibited input changes. In many practical
situations, other columns may also contain unspecified (or don’t care) next
states as a consequence of input sequences that cannot arise in practice.
Figure 4.23 developed from figure 4.22 is a typlcal example of such a situation.

In an incompletely specified flow table the next states that cannot be speci-
fied due to input restrictions do not cause any ambiguity. This is because, as a
result of rule 1, all equivalent stable states are in the same column as each
other, and consequently the unspecified next states are also in the same col-
umn as each other. More generally, unspecified next states may occur in any
column and may coincide with a specified next state for an equivalent stable
state. In declaring these two states equivalent (or compatible), a value is being
assigned to what was previously a don’t care next state for one of the stable
states. This could effectively preclude equivalence between this latter stable
state and several other stable states. The situation is analogous to the merger
problem where a may be mergeable with either b or ¢ but not both. Now we
have a=b or a=c but not both.

The problem is that by choosing, arbitrarily, one pair of equivalences
several further equivalences may be ruled out, thereby leading to a non-
minimal solution. However, as discussed in section 5.4.1, it is generally
better practice to specify a suitable next state in all cases.

4.4.6 State assignment

The processes of equivalent-state detection and merging yield a flow table
that has the minimum number of rows consistent with meeting all the require-
ments of the particular problem specification. It is now necessary to identify
each row of the table, that is, each internal state, by means of a unique com-
bination of state variables. For n rows (internal states) g state variables
will be required, where 2?>n. If n happens to be exactly a power of two,
all possible combinations of the state variables will be just sufficient to
identify all the rows of the table. More frequently, the total number of
combinations will exceed the number of internal states and several unused or
don’t care combinations of state variables will arise.

At first sight, assignment of the state variables should not present any
difficulty. The internal states could simply be numbered arbitrarily by means
of a binary sequence of state variables. Not surprisingly, the problem is not
quite as simple as this. Most important, the state variables should be assigned
in such a way as to avoid critical races (section 4.3.1); that is, it should never
be necessary for more than one state variable to change at once. This will be
discussed in more detail later.
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Having obtained a race-free assignment, it is not possible to ensure that
the combinational logic required (input and output circuits) is minimal for
the particular assignment chosen without exhaustively testing all other
possible assignments. The magnitude of this task increases very rapidly as
the number of state variables increases.

The first assignment may be made in any of 29 ways, the second in 277!
ways and so on. Therefore the maximum number of different assignments is
27! but as there are (2¢ —n) redundant combinations this reduces to

241
27 —n)!
Many of these are degenerate since they represent merely an interchange of
the labelling or a logical inversion of the state variables, and the number of

truly distinct possible assignments has been shown by McCluskey and Unger
(1959) to be

271
(29—n)'q!
The rapid increase in the number of possible assignments is shown in figure
4.28. Clearly it is impossible to try all the alternatives for any except the very
smallest systems. As an aside, note that the last row of figure 4.28 indicates

that there are over seventy-five million distinct ways of using four binary
digits to represent the ten states of a decimal system.

n q 29—n N

2 1 0 1
3 2 1 3
4 2 0 3
5 3 3 140
6 3 2 420
7 3 1 840
8 3 0 840
9 4 7 10 810 800
10 4 6 75 675 600

Figure 4.28 Number of possible state assignments (N): n=number of internal states; q=number
of state variables; 2* —n=number of don’t cares.

A further consideration that is very important from the practical point of
view has received relatively little attention. This concerns the setting up of a
conceptual relationship between the state variables and the physical nature of
the problem under consideration. For example, a pulse-sorting circuit may
be concerned with the order of arrival of pulses on three inputs x, x; and x3.
From a testing and fault-finding point of view it is particularly convenient if
the state variables have an immediate significance such as ‘the pulse on x;
preceded those on x, and x3°. Of course, by the very nature of the state-vari-
able approach any assignment must store all the information of this kind but
in many cases the relationships between the state variables and the physical
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processes can be a very tenuous one. It is the authors’ contention that this
approach is worthy of serious consideration even if it leads to a non-minimal
number of state variables.

Figure 4.29 shows the three possible state assignments for the merged

Inputs (x; x5) Possible state assignments
OO M0 |y m H v H

@1 -49]oo0
883 |7
T I

(a) (b) (c)

-0
s a0O0
o= =0

Figure 4.29 Flow table showing possible state assignments.

flow table developed in section 4.4.4. The total number of assignments is
221=24; it is left as an exercise for the reader to establish that the remaining
twenty-one of these can be changed to one of those in figure 4.29 by inter-
changing y, and y,, logically inverting y,, logically inverting y, or a combina-
tion of two or more of these operations.

Assignment b should be avoided since it leads to a race condition. In the
case of this assignment, the change from unstable state 4 to stable state 4
requires a change of both state variables; if y, should change first, state 3
will be reached and no further change will occur. Similarly assignment ¢ is
unsuitable since both state variables change during the transition from
unstable state 1 to stable state 1, and so a is the only useful assignment in this
case. In general the assignment should be such that all possible transitions
from an unstable to a stable state require only one state variable to change.
Sometimes this may not be possible, in which case the original design should
be carefully examined to see whether any changes can be made to avoid the
race condition. Alternatively it may be necessary to introduce an extra state
variable; the additional don’t cares allow greater flexibility at the assignment
stage (see example 4.5).

The bottom row of figure 4.29 consists entirely of don’t cares and could,
at first sight, be ignored for the remainder of the design. However the system
based on assignment a could, just possibly, arrive in the internal state
y1y2=11, possibly on first switching on or due to an interference pulse.
(There is, of course, no predicted transition by which this state could be
reached.) To ensure consistent operation in the event of such a state being
reached, it is helpful to enter unstable states in the row of don’t cares in such a
manner as to bring the operation back within the required sequence of
states. (Stable states could be entered but this would result in the representa-
tion of the stable state by more than one combination of state variables.)
For example, in the bottom row

0654
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could be entered giving a reset to stable state 0 in the case of x;x; =00, and
a transition to y,y, = 10 for all other input combinations.

In the present example there is only one race-free assignment and so the
design can proceed with the determination of excitation or flip—flop input
equations as in section 4.4.7. More generally there will be several distinct
race-free assignments and the problem exists of determining the one that
leads to the most economical implementation.

In the case of synchronous systems (chapter 5) the restriction on multiple
changes of input and state variables does not apply. All possible state
assignments are therefore allowable and the problem of choosing an optimum
assignment is more difficult. A detailed discussion will therefore be deferred
until chapter 5.

4.4.7 Excitation and flip—flop input maps

The design has now reached the stage where a set of state-variable combina-
tions defines the internal states of the system and the remainder of the merged
flow table stipulates the required sequences in response to input changes.
The associated outputs are defined by the primitive flow table. The remaining
design work and subsequent hardware implementation is purely automatic
unless the combinational logic involved has more than one minimal solution.

An initial choice must be made between a purely logic-gate implementation
(figure 4.1) and one using set-reset flip—flops (figure 4.2); the authors prefer
the latter for reasons already stated but for the sake of completeness both
approaches will be described.

If a ‘gate-only’” approach is to be used, the next stage is to construct an
excitation map ensuring that the required stable states are, in fact, stable and
that the unstable states bring about the required transitions. If state assign-
ment has been done correctly, there will be no critical races but it is useful
to make a careful check at this stage.

By way of example, an excitation map for the flow table of figure 4.29 using
assignment a will be constructed; note that values (normally unused) will be
assigned to the don’t cares on the bottom row of the table as mentioned in
section 4.4.6. The resulting flow map is shown in figure 4.30, where the lower

OIERESK

RBEIE
YZ0654

AGIEIE) N

X2

Figure 4.30 Flow map with assigned state variables.
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two rows of the map have been interchanged in order to give the format
required for normal Karnaugh-map representation.

The excitation map can now be constructed; the entries in the cells cor-
respond to Y, and Y, which will be generated as functions of X1, X2, y; and
y2. Initially, entries should be made for the stable states (remember that
Y=y, and Y,=y,). Figure 4.31 shows the rudimentary excitation map

X1

e —
00
o1 ] o1 | o1
y2
N
10 {10 } 10

X2

Figure 4.31  First stage in the construction of the excitation map.

containing these entries. The remaining entries, apart from the don’t care,
must be made unstable in such a way as to bring about the required transition.
For example, unstable state 1 requires a change to stable state 1—that is,
unstable state 1 must be made unstable with respect to y,—and so 01 is
entered. Similarly unstable state 6 requires a change in y, (from one to zero)
and so 10 is entered. Note that in practice this procedure is very simple; the
binary combination that is entered is precisely that of the stable state to
which a transition is required. The resulting complete excitation map is
shown in figure 4.32.

ool 01| + {10

cojlo1|or} o1

Y2
o0 l10{10] 10

K]
ool10 10|10

Figure 4.32  Completed excitation map.

Combinational expressions for Y, and Y, can now be written down. To
facilitate this the maps for Y, and Y, can be separated as shown in figure
4.33. From this figure the minimal expressions for Y; and Y, are

Yi=x2y1+x1y1 +x1¥
Yo=x251+x151y2
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Figure 4.33  Excitation maps for (a) Y, and (b) Y.

where the don’t care has been included in both expressions. The system can
therefore be implemented as shown in figure 4.34.

delay n

a2

Figure 434 Detailed circuit for the example. The delays represent the total delay of the gates and
are not discrete components.

Alternatively, the system could be implemented using set—reset flip—flops,
in which case the flow map of figure 4.30 must be interpreted in such a way as
to provide the SET and RESET functions. Stable states, of course, indicate
that no change in the state of the flip-flop is required. A system state that is
unstable with respect to (normally) one state variable indicates the state
variable that is required to change either from zero to one (SET condition) or
from one to zero (RESET condition). These conditions will be denoted by S
and R, respectively.

In addition, don’t cares can arise firstly by virtue of unspecitied next states
as in figure 4.30 and secondly because of redundancy in the flip—flop input
equations. That is, once a given flip—flop is in the one state it is permissible to
apply further SET inputs unless that flip—flop is specifically required to
RESET (remember RS=11 is prohibited). In figure 4.30, for example,
unstable state 1 represents a SET condition for the y, flip—flop but stable
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states 1, 2 and 3 represent SET don’t cares for this flip-flop. SET and RESET
don’t cares will be denoted by s and r, respectively, and must only be used with
respect to the appropriate function, that is, SET or RESET. Unspecified next-
state don’t cares, denoted by +, may be used with respect to either or both,
of course. On this basis SET/RESET maps may be constructed as shown in
figure 4.35.

Al -

Y2

X2 X2
(a) (b)

Figure 4.35 SET/RESET maps for (a) the y, flip-flop and (b) the y, flip—flop.

Note that the complementary nature of the flip—flop input equations is
such that just one entry arises for each cell (except for +, which could also be
r Or s).

From these maps minimal expressions for the SET and RESET conditions
may be derived.

SET y; =x¥,
RESET yl =.)—Cl)_€2
SET y,=x,¥;

RESET Y2=W1 +)_Cl)_Cz

Some writers use a separate map for each function, in which case ones and
zeros may be used in place of lettering but twice as many maps are required.
From these equations the circuit may be derived directly (figure 4.36).

X1
Y2

Xy

X2

Y1

Yo

N
X
X2

R Q

i 0

Figure 4.36 Detailed circuit for the flip—flop version of the example. For clarity, the feedback
connections (y;) and input inverters are not shown.
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4.4.8 Avoidance of hazards

Although care was taken at the state-assignment stage to avoid critical races,
no mention was made in the previous section of the care necessary to avoid
the various forms of hazard.

Essential hazards, if present in the reduced flow table, cannot be eliminated.
At worst, it will be necessary to insert delays at the testing stage to ensure that
the appropriate signals always win the race.

Dynamic hazards will be present only if unsuitable (multistage) factoring
has been employed or if static hazards are present. It can be seen that the
prime obligation of the designer at the stage covered in the previous section
is to ensure the avoidance of static hazards.

It will be recalled (section 4.3.2) that static hazards arise when one term, or
loop, in a minimised Boolean expression is turning off while another is turn-
ing on. The safe procedure is to introduce a further term covering this transi-
tion. Inspection of figure 4.33 shows that the present design, by chance, is
free from static hazards. In general extra (hazard) terms would be required.

All implementations using set-reset flip—flops are inherently free of static
hazards. For example, consider the flow map of figure 4.15b; inspection
shows that this could be implemented using a single set-reset flip—flop having

SET y=x;x,
RESET y=)?1X2

The corresponding circuit is shown in figure 4.37 where the single set-reset
flip-flop has been drawn to show the two NOR gates of which it could be
composed. .
%, (R)

X2 ——
X1 )
X2

Figure 4.37  Flip—flop circuit redrawn to facilitate analysis.

Analysis of this circuit in purely combinational terms yields Y =x;x,+
X1+ X,y. Comparison with figure 4.15a shows that all prime implicants are
present, including the redundant term required to avoid static hazards. It
can be established that set-reset flipflop implementation automatically
involves generation of all the prime implicants, thereby ensuring a design
that is entirely free of static hazards. This is a sound reason for adhering to this
approach. The extra cost in gates is not large and in this case the flip—flop
approach is more economical than the hazard-free feedback circuit (figure
4.16).

4.4.9 The output circuit

The final stage of the design process involves the purely combinational logic
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that generates the required outputs as functions of the state variables and,
in general, the inputs. In some systems, particularly counters, the outputs are
the state variables themselves; that is, the output circuit (figures 4.1 and 4.2)
has degenerated into a ‘straight-through’ type of function with no dependence
on the inputs.

More generally, a set of output values z; will be associated with each stable
state of the system and, if output-inconsistent mergers have been involved,
generation of the output values will require gating of the state variables and
input signals. As an example, consider the assigned flow map of figure 4.30;
this was obtained by merging the primitive flow table of figure 4.21. Two
outputs (z; and z,) are required and, since output-inconsistent mergers have
been used, the required values must be obtained by referring back to the
primitive flow table. From figure 4.21, it can be seen that output z, is required
to be one only in state 3 and output z, is required to be one only in state 6.
Consequently, from figure 4.30

Zy=X1X2¥1y2

and
Z3=X1X2)1¥2

which can be implemented directly.

In general, a given output may be required to be energised in more than one
total state and normal map methods can be used for the minimisation of the
Boolean expression involved. Don’t care total states may be included but the
question of whether or not unstable total states should be included sometimes
causes difficulty. For example, the above expression for z, could be reduced
to X;x,y; by including unstable state 6 in the output term; since the internal
state y;y, =11 does not normally occur (don’t-care assignment), this is
perfectly acceptable. Even in situations where the associated unstable state
exists frequently, its inclusion in the output expression merely causes the
output to change value at the beginning rather than the end of the state transi-
tion, an effect that would normally be quite allowable.

Further inspection of figure 4.30 suggests that inclusion of two of the
unstable 0 states could further reduce z, to X, y;. The z, output would then
become one as soon as unstable state 6 is entered and remain one until the
transition from unstable state 0 to stable state 0 is completed. Again this small
extension of the output duration would normally be acceptable. Note that
this last simplification has introduced a further effect; a change from state 4
to state 0 via unstable state O (caused by x, changing to zero) will now generate
an output, momentarily, on z, as unstable state 0 is passed through. This may
or may not be acceptable, depending on the application. If fast logic elements
(for example, transistor-transistor logic) are being used, the spurious pulse
will be only a few tens of nanoseconds:long and will not affect output devices
having a long response time such as electromechanical devices or visual
displays (at least those for human perception). If slow logic is being used, and
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particularly if operation has been deliberately siowed down by the incorpora-
tion of time delays, the effect on output devices might be more serious. In any
case, if the asynchronous system forms part of a larger system and z, could
feed further sequential circuits, the spurious pulse could well cause mal-
operation due to a false state transition.

As a general rule, if there is any doubt concerning the possible effect of
including additional unstable states in the output function, the safest practice
is to avoid them.

4.5 Examples

This section contains examples, both worked and unworked, based on the
material of this chapter. In the worked examples, advantage has been taken
of the opportunity to expand some of the points made in the text; the sub-
sequent unworked examples should be capable of solution by readers who
have followed the material of the chapter and the worked examples.

Example 4.1

Analyse the circuit shown in figure 4.38 and comment on any abnormal
features.

Xy
X2

X4 —
X2

Figure 4.38  Circuit for example 4.1.

Solution On first sight this is an asynchronous sequential circuit having two
inputs and one state variable. Assuming the feedback path to be disconnected,
the excitation equation (for Y) may be written in terms of x,, x, and y (using
the transform rules of section 2.2)

Y =x1x2(x1X2y) +x1X2y
=X1X2()_Cl +)_C2 +F)+x1x2y

(by De Morgan’s theorem)

=x1X2(¥+ y)=x1%;

The feedback variable, here represented by y, is degenerate and cannot be
used to store a state variable, and the circuit is not a sequential one at all.
Although possibly a ‘trick’ question, this circuit illustrates a very important
point. This is that, although a distinct feedback connection is essential for
each state variable to be stored, the apparent existence of a feedback con-
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nection does not necessarily guarantee a storage capability. Nevertheless,
circuits designed in accordance with the rules presented in this chapter
should not contain degenerate feedback loops.

Example 4.2

An asynchronous system is shown in figure 4.39. Analyse this circuit by
X2
vz
Xy
Y
X4
XZE *_J
N

Figure 4.39  Circuit for example 4.2.

constructing an excitation map and hence a flow map. This circuit contains
two types of hazard. Indicate what these are and explain how mal-operation
of the circuit can occur. How would the effect be avoided in a practical circuit ?

Solution Using the transform rules (section 2.2) the excitation equations
may be written down directly

Yi=x2y1+X2y2
Y =Xay2+X1X2¥1 +X1X2)1

The corresponding maps are given in figures 4.40a and b, respectively. By
checking each cell in turn for stability the flow map of figure 4.40c may be
constructed. The corresponding state-transition diagram is given in figure
4.40d. (No outputs are shown since they are not specified in the original
circuit.)

Figure 4.40 shows that the circuit involves a minimal number of prime
implicants, leaving several state transitions unprotected from static hazards.
For example, from figure 4.40 it can be seen that the transition from stable
state 5 to stable state 8 by way of unstable state 8 involves the ‘turning-off’
of the term X,y and the ‘turning-on’ of x,y;. If this second term is delayed,
Y, will ‘slip’ to zero and remain there, resulting in a transfer to a false stable
state (state 4). Inclusion of the hazard term y,y, (shown dotted in figure 4.40a)
will protect against all hazards with respect to Y ;. Similarly, the terms X; 71 y»
and x,y:y, are required to protect Y, from hazards.

Examination of figure 4.40c shows that there are no critical races but the
first two columns show one of the patterns characteristic of an essential
hazard. That is, starting in any of stable states 1, 4, 5 or 8, single and triple
changes of input variable x, result in different final states. For example,
starting in state 1, one change of x, leads to 4 whereas three changes lead to 8.
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Figure 4.40 Solution to example 4.2. (a) Map for Y . (b) Map for Y,. (c) Flow map. (d) State-
transition diagram.

This represents correct (predicted) operation; the change from zero to one
of x, results in a change from zero to one in Y, and no change in Y. Consider
the gate (figure 4.39) that has X, and y, as inputs; if the signal X, should
appear after Y, has changed to one (due to an excessive delay in the inverter
generating X,), Y, will change to one and remain there (due to the term
x,y1). Therefore, the immediate result is a transition to unstable state 8
followed by an inevitable transition to stable state 8, which represents the
final state corresponding to three changes, not one. Correction may be
effected by including a delay to ensure that the change in y, succeeds that in
X5

Example 4.3

An asynchronous sequential system has two inputs x; and x.,. Input x, is a
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regular train of pulses and x, consists of pulses occurring irregularly and
delayed slightly with respect to x;. The delay is such that an x, pulse, when
it occurs, always overlaps an x; pulse. Design a circuit that produces an
output coincident with the next x; pulse after the one during which overlap
occurs. The details are shown in figure 4.41. Assume no other input conditions

L L reri
W N N I
. 1 L1

Figure 4.41 Waveforms relating to example 4.3.

can occur. Show that a minimum of seven states is required, giving a flow
table that can be merged to three rows. Complete the design using set-reset
flip-flops.

Solution This problem was outlined in section 4.4.2. The three variables
X1, X3 and z have a maximum of eight possible combinations, and inspection
shows that two (X;X,2=001 and 011) do not occur; at first sight, therefore,
there are only six states. The fallacy lies in the fact that stable states 1 and 5
(as numbered in figure 4.42) although having the same present values

Figure 442 Waveforms of figure 4.41 with the states numbered consecutively.

(x1x2z=000) have different next states (2 and 6) for the same next-input
value (x;x,=10). States 1 and 5 therefore are not equivalent. In deciding,
at this stage, that states are equivalent it is important to consider the total
sequential behaviour, and not just the instantaneous values of the variables
concerned. If in doubt, always assign separate state identifications; the
formal equivalent-state detection procedure will identify any equivalences
at a later stage. Normally several equivalences can be identified with con-
fidence at this stage but, as an illustration of the process of equivalent-state
detection, all combinations of variables in figure 4.42 have been given separ-
ate identifications.

Figure 4.43 shows the primitive flow table, which can be written down
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Inputs (xyx5)
00 01 11 10

QOutput

z

- 00 =2~ 00000=200000O0

Figure 4.43  Primitive flow table derived from figure 4.42.

directly from the timing diagram. The corresponding implication chart is
given in figure 4.44, from which the following equivalences can be inferred:
1=7,2=8,3=9,4=10=14, 5=11=15 and 6=12=16. The reduced flow

State number
2| x
3Ix X
4Ix X x
5|26 X X x
6|x x x x x
7128 x x x && x
8fX 39 X X X X X
9x x 410 X X X x X
X X X 51 X X X X X
M2 X X X 612 X 848 X x X
2fx X X X X v X X X X X
1BIX X X X X X X X X X X X
14X X X 515 x X X X X MB X X X
15246 X X X 616 X 88 X X X 1206 X X X
®BX X X X X 1,7 X X X X X 4 X X X
12 3 4 5 7 8 9 10 1M 12 13 14 15

Figure 4.44  Implication chart for example 4.3.

table, from which the redundant states have been eliminated, is given in
figure 4.45. Note that the unconditional equivalence of states 6 and 12
introduces a 13 into the sixth row of the reduced table. (The reduced flow
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Inputs (xyxz) Qutput
00 01 11 10 z

- = 0 O 0 0o O

Figure 4.45 Reduced primitive flow table for example 4.3.

table corresponds to the timing diagram of figure 4.22.) Several mergers are
possible; the complete set is shown in figure 4.46, where the solid lines indic-

Figure 4.46 Merger diagram for example 4.3.

ate output-consistent mergers. For compactness, state 13 has been renum-
bered 7.

Several combinations of mergers are possible with no clear optimum.
Two three-way mergers would be possible only by using (4, 5, 7), which is not
output-consistent, and this would lead to a three-row merged table. However,
a three-row merged table can be obtained without involving any output
inconsistencies. There are two possibilities, namely (1, 2, 3), (4, 5), (6, 7) and
(1, 2), (3, 4, 5), (6, 7); the former will be chosen (arbitrarily). The resulting
table is given in figure 4.47, where, for reference, the rows have been lettered.
The problem now is to assign state variables (two will be required) in a race-
free manner. The required transitions may be derived from figure 4.47a and
entered on the map of figure 4.47b; this represents a Karnaugh map of the
(at-present unassigned) state variables. The asterisk represents the (one)
redundant combination of state variables. The transition from a to b repre-
sents the transition from unstable state 4 to stable state 4 with similar arrows
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l Inputs (x1x3) lOufput

00 01 11 10 z
O8] o
b|®@ - 8| 0
el a @G 1

(a)
Y2
—t—
a—pb a —>»b
Y r N
* °C d €&c }y,
(b) (c)

Figure 4.47 Merged flow table (a) and inter-row transitions (b) and (c) for example 4.3.

indicating the other inter-row transitions. Note that, however a, b and c are
interchanged on the map of figure 4.47b, at least one diagonal transition
remains; this corresponds to a simultaneous change of two state variables
(regardless of how they are assigned) and will lead to a critical race.

In this case, the diagonal transition can easily be avoided by bringing
into use the don’t-care state-variable combination, which will now be identi-
fied as row d. This is shown in figure 4.47¢c, where state variables have been
assigned. This assignment is arbitrary but ensures that all required transi-
tions involve a minimum number of state-variable changes. The correspond-
ing modified flow table is shown in figure 4.48; note that unstable state 1 in

Inputs (X1 x2) |Output | State variables
IOO ot 11 10 F4 l n oy
ol a2 @] o 0 o0
b|®@ + 6| 0 o 1
el @E) 1 11
d 1)4 3 2| + 1 0

Figure 448 Assigned flow table for example 4.3.

X X1
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r r + S s s + s
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s R ‘s sJ m s s s
M S
(R1W]r]r Ui - |-
T 1 [e——
X2 X2
(a) {b)

Figure 4.49  Input maps for the flip—flop solution to example 4.3. (a) For the y, flip—flop. (b) For
the y, flip—flop.
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row ¢ must be implemented in such a way as to ensure an initial change to
row d as shown by the arrow (otherwise a critical race could lead to stable
state 5). The remainder of row d has been filled with appropriate unstable
states to avoid the possibility of jamming’ in this internal state. The output
for this (purely transient) internal state may normally be regarded as a don’t
care and, for simplicity, will be equated to y; in the present example. (Note
that a race can exist in the second column but, as there is only one stable
state, this cannot be a critical one.)
From the maps of figure 4.49 the flip-flop input equations are

SET Yi=X1)2
RESET Y1 =_)—/2 +.)_ClX2
SET y2=>_clx2

RESET %) =)_61)_62y1

The corresponding system is given in figure 4.50. It is also permissible to

X‘l )} s @ =2)
7 Y \=2

%

X4
X2 S @ Y2

X
At -
1

Figure 4.50 Circuit of the flip—flop solution to example 4.3.

introduce stable states into the row corresponding to the don’t-care state-
variable combination. For example, row d could be written as

D40Q

In this case, the result is a simplification in the input gating; RESET y,
becomes x(x, (which is the same as SET y,).

Example 4.4

A certain asynchronous design produces a primitive flow table as shown in
figure 4.51. Show that this can be reduced to a merged table having four
rows. Derive a logic gate implementation for the system; ensure that this is
free of static hazards. Indicate how the outputs (z; and z, ) could be obtained.

Solution By inspection, 1=5 if 2=7, but 2 cannot be equivalent to 7
because of output differences that exclude all other possible equivalences.

\
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Inputs (x4 x5} Outputs
00 01 1t 10 | 2y 22
M2 -4afo o
5@ 3 -|o 1
-2®a |1 o
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Figure 4.51 Primitive flow table relating to example 4.4.

The merger diagram is given in figure 4.52. It can be seen that all mergers are
output-inconsistent and the best set is (1,4, 6) and (2, 3), which gives a merged

\
\
~ \
~
~
OO
Figure 4.52 Merger diagram for example 4.4.

flow table as shown in figure 4.53a. The internal states may be identified as
a, b, c and d; the corresponding transitions are indicated in figure 4.53b. At
first sight there are two unavoidable diagonal transitions that indicate critical
races. However, the transition from ¢ to a occurs in a column containing
only one stable state and so the race is not critical. The transition from d to b
can be avoided by making use of the don’t care on row c. The transition from
unstable state 3 to stable state 3 is made to occur by using the don’t-care
state as shown in figure 4.54 which has the assignment of figure 4.53b. The
excitation map (figure 4.55a) may now be written down directly; for clarity,
the maps for Y and Y, are separated as shown in figures 4.55b and 4.55c.
The transitions from state 5 to state 7 and back again involve a static hazard
with respect to Y, ; the additional (hazard) term required is shown dotted in
figure 4.55b. Similarly, two hazard terms are required in the expression for
Y, (figure 4.55¢). Therefore the full expressions for Y, and Y, including
hazard terms are

Y =X1Xop:+ X1X2y1 +Xoy1 V2 + X1y1)2
Yo=X1X2y2+X1X291 +X1X2y2 + X1 X2Y1 + X1 P1V2 + X271 )2
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Inputs (x, x;)
Y2
00 01 11 10 A
—>
S
d & ¢ }y,

(a) (b)
Figure 4.53 (a) Merged flow table and (b) inter-row transitions for example 4.4.
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Figure 4.54 Flow map for example 4.4.
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Figure 4.55 Excitation map (a) for example 4.4. Maps (b) and (c) show the required functions
for Yy and Y,, respectively.

Note that the first term is common to both expressions. The outputs (z, and
z,) associated with each stable state may be read from figure 4.51 and (using
figure 4.54 to locate the stable states) recorded on the output maps (figure
4.56). Note that the don’t care associated with the unspecified next state is
included, together with don’t cares representing the unstable states, which are
associated with the appropriate stable states generating the outputs. In this
particular example, inclusion of these unstable states as don’t cares will not
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Figure 4.56 Output maps for example 4.4. (a) Map representing z,. (b) Map representing z;.

generate any spurious output pulses, so the minimised output functions are

Zi=X2y1+X1Y2+X1X2
Zy=X1X2V1 +X1Y1V2 + X1X

Note that the term x;X, is common to both expressions. By omitting two of
the don’t cares from the term x,y,; in the expression for z;, the term x,y, 75,
which is already available (inverted) as a term in Y, may be used. Similarly
X1X2y, (used for Y ;) can replace x; y;. Also X;x, 7, is available as a component
of Y,. The resultant system is given in figure 4.57.
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Final circuit for example 4.4.
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Example 4.5

Obtain a race-free state assignment for the reduced flow map of figure 4.58.
Hence derive input equations for set-reset flip-flop implementation.

X1

[O]:|e]®
6|5 |@|®@] 4
c|®|7|e]|a4
a1 @] 3|4

X2

Figure 4.58 Flow map relating to example 4.5.

Solution This flow map is very similar to that derived in the solution of
example 4.4 except that all next states are now specified. The required transi-
tions are again as shown in figure 4.53b but the don’t care in row ¢ is no
longer available and cannot be used to avoid the diagonal transition from
row d to row b. It is no longer possible to permute the cells of figure 4.53b in
such a way as to avoid all diagonal transitions and an additional state vari-
able is unavoidable if all critical races are to be eliminated. An expanded
version of figure 4.53b is given in figure 4.59a, where each row is now assigned
to two cells of the map. This technique follows Huffman (1955).

——
o D 2 @ ®@
” by ( 5 @ 3\ 4
—— % \ @ £
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o | e b2 s @i @] @
Y21 By Y3
(@ e [|n]7)]|@]® .
[ (5) g' (6) | (4

X2

()
Figure 4.59  (a) Assignment map and (b) expanded flow map for example 4.5.

Note that any given cell (identified by a letter) can now be entered from
any other lettered cell without making a diagonal transition and without
passing through any other letter. Some transitions may be direct, for example,
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b,—a,, but others may involve one or more of the alternative state assign-
ments, for example, ¢;—c,—d,;—d,. Although not essential, it is con-
venient to associate stable states only with the primary assignments (for
example, a, includes stable states 1, 6 and 4 together with unstable state 2),
whereas the secondary assignment is associated solely with unstable states
(for example, a, includes unstable states 1, 2, 4 and 6).

Figure 4.59b shows the flow table expanded in accordance with the
assignment of figure 4.59a. The rows containing stable states correspond to
cells ay, by, ¢; and d;, which in turn correspond to rows a, b, ¢ and d of the
original flow table. The remaining rows, containing unstable states, cor-
respond to cells a,, b, ¢; and d, and are essential for the transitions marked
by arrows to be free of critical races. Some unstable states on these rows are
bracketed; this indicates that they do not take part in any required transition
and could be regarded as don’t cares. It is more satisfactory to regard them
as the appropriate unstable states in order to avoid a possible logic jam’ if
an unfortunate combination of don’t cares in the flip-flop input equations
should result in extra stable states.

The flip-flop input maps can now be constructed (figure 4.60); care must
be taken to ensure that these are constructed in such a way that transitions
occur as indicated by the arrows in figure 4.59b, or otherwise critical races
will not be avoided.

Xq X1 X1
" — e, .
r rl(r j r m r () r r r r
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Y21 ] T
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Figure 4.60 Flip—flop input maps for example 4.5. (a) For y; flip-flop. (b) For y, flip-flop.
(c) For y; flip-flop.
From these maps the required flip—flop input equations may be written
as
SET y; =X1x272y3

RESET y, =x1V3+ 273 +X1X, )2
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SET y,=X1x271¥3+ X1 X2)1¥3
RESET y; =X2y173 +x1X2¥3+X1X2¥1 )3
SET y3=X1X,¥1y2
RESET y3=x1 +X2y2+y1y2

Example 4.6

Analyse the asynchronous sequential circuit shown in figure 4.61. Express
your answer in the form of a flow table showing clearly the stable and un-
stable states. This circuit contains an ‘essential hazard’; explain what this
means and show how the existence of the hazard may be recognised from the
flow table. How would the effect of the hazard be minimised in a practical
circuit?

Xq
X2

i
X4

X2

X4
X2 Y2

Figure 4.61 Circuit relating to example 4.6.

Example 4.7

A circuit is required to produce an output pulse z if and only if an input pulse
x; occurs. A reference pulse x, occurs every operating cycle whether an x;
pulse occurs or not. The output pulse is required to have the same timing
as x,. Some overlap is assumed between the x; pulse, when it occurs, and x;
the two possibilities are shown in figure 4.62. A combinational circuit cannot
meet these requirements in view of the timing difference between x; and z.
Instead, it is necessary to have one state variable that ‘remembers’ the fact
that an x, pulse has occurred until the end of the x, pulse. Design a suitable
system both intuitively and formally.

x X4

M
N S |
m

2’

z z

Figure 4.62 Waveforms relating to example 4.7.
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Example 4.8

Figure 4.63 shows the waveforms relating to a three-bit Gray-code counter
(x is the input and y,, y, and y; are the state variables). Complete the design
using both combinational logic with feedback and set-reset flip-—flops. Ensure
that static hazards are eliminated by including appropriate terms in the
former case. Note that the problem inherently involves essential hazards.

U N I I B I
ad LT LT
1 T
—

Figure 4.63 W aveforms relating to example 4.8.

Example 4.9

A digital phase discriminator has two inputs x; and x, and two outputs
z, and z,. It is required that pulses should dccur on output z, when the phase
of x, lags that of x,; conversely, pulses are required on z, when x; leads x,.
Suitable waveforms are shown in figure 4.64. Complete the design of the
circuit. [An elegant solution using only one state variable has been given by
Lind (1972).]

SR I I I S—
WU D S N SS—
o L1 [ 1 1

SR [ I N S—
N I (S I -

X2

: 1 1 S I

Figure 4.64 W aveforms relating to example 4.9.
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Example 4.10

The primitive flow table for an asynchronous sequential system is shown in
figure 4.65. Eliminate all redundant states. Show that the reduced flow table
can then be merged to a table containing three internal states. Note that one
of these has no possible exit. Obtain a race-free state assignment and com-
plete the design of the system.

Inputs {xyx5) Output
00 01 11 10 z
e - o
@86 -1 0
@4 -10 0
3@ o9 - 1
2B 9 - 0
1 (68 - 1
- 51 o
-6@®M 1
- 42 ®0 1
3 - 900 1
1 - 8@ 1

Figure 4.65  Primitive flow table relating to example 4.10.
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Synchronous Sequential
Systems

The formal basis and development of combinational-logic design and asyn-
chronous design have been discussed in previous chapters. In this chapter
attention is given to the design of clocked or synchronous systems. Extensive
use of medium- and large-scale integration in logic systems is encouraged in
this design procedure.

The techniques developed for asynchronous systems are also applicable
to synchronous design, with a few differences. The first significant difference
is that, with synchronous designs, two or more input signals can quite freely
change between clock pulses, whereas fundamental mode operation is
assumed for asynchronous designs. In the initial design, therefore, there are
more permissible input combinations to consider. Another important differ-
ence is that for synchronous logic all states are considered to be stable, and
so the concept of an unstable state disappears. The possibility of hazards and
races is therefore completely eliminated. Other aspects of design—for
example, the state-transition diagram, the flow map and detection (and
elimination) of equivalent states—remain the same.

5.1 Advantages and disadvantages of synchronous systems

The basic idea behind the synchronous concept is as follows. Imagine a
train of narrow positive pulses, which will be referred to as clock pulses. These
pulses are normally equally spaced from each other in time. A synchronous
device will commence activity only at the beginning of (or during) a clock
pulse. It will finish its processing at some time after the pulse, but is guaran-
teed to be finished before the arrival of the next clock pulse. When many such
devices are connected to a common clock pulse, they will all start operation
(or be synchronised) at the arrival of a clock pulse, and will finish their work
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at more or less random times. But each device will have a worst-case upper
time limit, after which time it is guaranteed that it has finished its operation.
The time between successive pulses should be arranged to be slightly longer
than the worst-case time of the slowest device in the system, to ensure that
the system functions properly. Thus the tolerances in the operation times of
the various devices have been accounted for.

From an equipment-manufacturing point of view, this state of affairs is
very desirable. It is not necessary to measure the actual speed of operation of
each device. Also from a maintenance and testing point of view, a synchron-
ous system is highly desirable. If a device should fail, it can be removed and
another unmeasured device of the same type number can be put in its place,
with the knowledge that the system should again function properly. To test a
synchronous system it is sufficient to note that any clock-pulse rate slower
than the specified rate will also result in correct system operation. This fact
means that clock pulses can be applied, one at a time, by the tester. After each
pulse the system will remain static until the next pulse is applied, thus allow-
ing leisurely inspection for fault detection. Another possibility is to use a
fairly low pulse rate and observe the outputs on an inexpensive oscilloscope.

If this state of affairs is compared to a system that is entirely asynchronous,
the advantages of the synchronous system become apparent. In an asyn-
chronous system the time delays (both propagation delays and processing
delays) of the various devices are very important and, in the feedback loops,
play a crucial role in ensuring proper system operation (recall the discussion
on hazards in section 4.3). If a critical race is discovered in the design, for
example, this snag will have to be resolved either by redesign (which will
usually result in more gates), by device characterisation (for example, ensure
that gate 4 has less than twice the propagation delay of gate B), or by adding
additional components into the system. This latter method consists of adding
capacitors in shunt with the gate outputs that are to be slowed down. Then
the rise time of the gate will be controlled mainly by a resistance—capacitance
time constant, with the capacitance externally controllable.

Needless to say, the above techniques can be time-consuming and costly. It
is usually the case that in a rather large asynchronous system the interactions
between its various parts can be very complex to analyse. In equipment
manufacture one cannot merely state that if the first twenty asynchronous
units function correctly then the next unit is bound to work. Sooner or later,
a unit will be built with all the time delays at the wrong extremes, in which
case the unit might well fail its production test. When this failure occurs,
then it is necessary to resort to the modifications mentioned above, all of
which are costly to the manufacturer. If a device in the asynchronous system
should fail, the replacement device (although within the manufacturer’s
specification) could lead to system failure, due to delay-time differences.
Finally, in testing an asynchronous system it is very difficult (if not impossible)
to slow down the circuit action for observation and recording purposes.
Therefore, expensive equipment is required for this task.
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The outstanding advantage of asynchronous circuitry is the rapid speed
with which it operates. To get the best of both worlds, the prevailing design
philosophy is to use systems that are synchronous, but circuitry within the
system that is asynchronous. In medium-scale integration this philosophy is
followed. A range of clocked (or synchronous) medium-scale integration
devices is available in the various logic families. Close inspection of the device
circuitry reveals that asynchronous techniques have been employed in their
design. If the overall system (which includes medium-scale integrated cir-
cuits) is synchronous, and a suitable clock rate is specified, there is no
limitation to the number of chips that can be used, and hence a very complex
system can be developed. Third-generation computers are an example of this
development. The one disadvantage of a synchronous system is the relative
slowness of operation, which is due to the fact that the time between succes-
sive clock pulses must be longer than the longest processing time of the slow-
est device in the system. Various methods to cope with this problem have been
developed. In some logic families there are certain members that have been
specifically developed for high-speed operation, such as Schottky-barrier
versions of transistor-transistor logic. These devices are pin-compatible
with their lower-speed counterparts in the family. Another technique that
proves useful in some cases is to redesign the system to include more parallel
processing. One can often obtain a speed increase for a cost penalty (more
devices) in this manner. Finally there is the possibility of mixing different
logic families together. This procedure is not without its disadvantages,
notably the interfacing problem and different power-supply requirements.
Still, the virtues of each family can be utilised by this means. For example,
the high-speed portions could be realised with emitter-coupled logic, and
the lower-speed portions (which might involve complicated processing
operations) with transistor-transistor logic or, speed permitting, comple-
mentary-metal-oxide-semiconductor logic.

5.2 Preliminary design
5.2.1 Initial specification

The specification for a synchronous system is often given in word form.
The main problem with a word specification, as mentioned in the previous
chapter, is that it does not usually give a complete listing of all input combina-
tions and sequences and their associated outputs. As an example, consider the
specification

Design a synchronous system which has, two inputs, x; and x,, and an
output z; z is to be turned on if and only if x, goes high before x,.

This specification is ambiguous. Consider the input sequence x,x, =00, 10,
00, 10, 00. When the inputs change from 10 to 00, should z go low, or remain
high? There are various possibilities to consider.
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(1) The specifier knew that this sequence would not occur in practice
and so did not bother to include it in the specification.

(2) The specifier knew that this sequence would occur, but is not concerned
with the output behaviour for this case.

(3) The specifier did not consider the consequences of this sequence
occurring.

Because of possibility 3, at this stage the designer’s best plan is to contact the
specifier, if possible, in order to clarify the situation. If the specifier is not
available, the designer will have to make some assumptions as to the intended
use of the system and proceed accordingly. Ideally speaking, the designer
would prefer to work from a state-transition diagram that would list all of the
possible combinations. The above specification could be made more definite
by either

(1) expansion of the word statement of the problem to include the output
value for all possible input patterns

or
(2) theuse of a flow map instead of a word statement to define the problem.

The point to be emphasised here is that it is vitally important that the designer
be given (or obtain) a clear and complete specification. It is not satisfactory to
accept a muddled specification and then to carry on with the expectation that
somehow things will sort themselves out.

5.2.2 Synchronous-system description

The general model of a synchronous system is given in figure 5.1. This figure
should be compared with the asynchronous-system model of figure 4.2.
In the synchronous-system model, floating subscripts are again used to
indicate groups of signals. For example, x; represents the group of all input
signals. Four groups are so identified: x;, the input signals; y;, the system-
state signals; z;, the system-output signals; and w;, the actions-output signals.

fiip —flop—
system control
X; inputs Si
L " state—transition ignals system-
> circuit state system
yi | (combinational clock memory states
|—) logic) pulse_—’ ( flip — flops) ¥
< Yi ] system
v v, - Wi output circuit outputs
3 actions—selector {combinational > 2;
Wi circuit actions control _ Xi logic)
;| {combinational mgngks)d( actions [
—|—> logic) pulse—,
< actions outpu
N w; By

X;

Figure 5.1 General model of a synchronous system.
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The state-transition circuit consists of combinational logic. This block
has inputs x;, w; and y.. Its purpose is to provide the proper input signals for
the flip-flops that comprise the system-state memory. As will be seen, this
memory is analogous to the instruction steps in a computer program.

The system-state memory is used in conjunction with x, and w; to control
the actions block by means of the actions-selector circuit. This selector
circuit, which is composed of combinational logic, decodes its input informa-
tion and drives appropriate actions-control lines. When the next clock pulse
arrives, the appropriate actions are initiated.

The provision of an actions block allows the designer to make full use of the
medium- and large-scale integration that currently exists. This block can in
principle contain circuitry of any complexity. It could contain the action of a
small asynchronous system (which is triggered by the clock pulse), or an
entire computer processor, for example. When an action is completed, it
might be desired to send an ‘action-completed’ signal back into the system,
as a safeguard for proper system operation. The w; signals are used for this
purpose. They can also be used to indicate a defined stage of some activity
(for example, a counter reaching a specified count) in the actions block.

The circuit that provides the system-output signals z; is also shown in
figure 5.1. The inputs to this combinational-logic circuit are normally
yiand x;, although one or more of the w; signals may occasionally be needed.

As stated above, the system-state-memory block corresponds to the
instruction steps of a computer program. The system changes its state from
one clock pulse to the next in the following manner. The y; outputs are applied
to the state-transition circuit. This circuit combines the y; signals (along with
x; and possibly w;), which are in turn connected to the system-state memory.
A complete feedback loop exists (in some ways similar to the feedback loops
of asynchronous systems), which is capable of indefinite memory storage. The
x; signals are used to control the sequencing of system-state memory. As an
example, suppose that the system is in state s; (given by y,y,y; =101, say).
On the next clock pulse, if x=1 the system is required to go to state s,
(y1y2y3=110) or, if x=0, to go to state s3 (y;y,y3=000). Then the state-
transition combinational logic should be designed to meet this requirement.

As mentioned above, the range of possible actions is limited only by the
designer’s imagination. It is a good plan to check on what is available in
medium- or large-scale integration before embarking on a design. If each
action can be made to correspond to one, or at most a few, integrated cir-
cuits, the resulting design will be relatively simple to develop, and will take
full advantage of the specialised circuitry that is currently available. An
illustrative example of this procedure will be given shortly.

5.2.3 Clock-pulse cycle

Before describing the design technique for synchronous systems it is neces-
sary to look at the sequence of events from one clock pulse to the next. This
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sequence is shown in figure 5.2 for master—slave synchronous operation. It is
convenient to start the description during time period A4, for which the out-
put signals of the state-transition circuit and actions-selector circuit (in
figure 5.1) are assumed to have settled. These signals can be viewed as giving
specific orders or commands to the synchronous devices in the memory and
action boxes during time period B;, which includes the rising clock-pulse
edge. The outputs of these devices, however, are not allowed to respond to
their orders during this time. These orders are usually stored internally in
‘master’ storage units, which are composed of flip—flops. The duration of the
clock pulse is long enough to ensure that the orders are stored properly. The
next event to occur is the falling edge of the clock pulse. This edge has two
functions. It blocks the masters from receiving fresh information on the input
lines until the next positive-going clock-pulse edge. It also starts a flow of
information from the master units to the slave units. The memory y; goes to the
next state. At the same time, the previously stored actions are executed. Then

state transition  control
and/or actions  signals
initiated settle

100
TR

flip — flop— state transition
control and actions  and actions
control signals settie ; fresh
remain static inputs settle

> fime

Figure 5.2 Sequence of events for three typical clock pulses.

new w; signals are formed by the actions box. The new w;, y;, and new input
signals are assumed to settle during C;. These signals are applied to the
state-transition circuit, and to the actions-selector circuit, which are com-
binational-logic circuits with inherent time delays. During the time period
D, the outputs of these circuits settle. The above pattern then repeats with
A,, B,, C; and so on.

The important point to note is that the system-state memory flipflops
are constrained. An output change initiated by a clock pulse will produce an
immediate input change by means of the state-transition circuit, but does not
produce a second output change until the next clock pulse. This is in contrast
to an asynchronous system, where the memory variables keep changing
until a stable state is reached. The clock pulses therefore act as regulators of
flip—flop activity.

5.3 Flow-chart method of design
5.3.1 Introduction

From the preceding timing sequence of figure 5.2 and from the synchronous
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model in figure 5.1 it is possible to construct a chart of synchronous-system
activity. Such a chart will henceforth be called a flow chart, as it will depict the
flow of system activity from one state to another. The general topology of this
chart is shown in figure 5.3. The system states are indicated by double horiz-
ontal lines. One can imagine that the system is in one of its states during the
time periods D, and 4, on figure 5.2. When a clock pulse occurs, flow
commences on the flow chart from state j, which has uniquely specified y;
values. As a general rule, there should be only one flow path leaving any state
on the chart. Usually it is convenient to associate downward movement
with increasing time. In figure 5.3 the flow from state j encounters a number of
binary decisions based on x; and w,, where the w; values are a result of
actions during the previous clock pulse. These decisions are used to direct
the flow to one particular action. These decisions are made by the actions-
selector circuit during B, in figure 5.2. This flow can be considered to occur
at the start of time period C, in figure 5.2.

Having selected an appropriate action, the flow is next directed to one of
the actions boxes. Moving through an actions box corresponds to some of the
time interval C, in figure 5.2. At the finish of the action, the flow must termin-
ate on another (or possibly the same) system state. (In reality the new state
usually occurs before the action has been completed.) The flow then rests at
that state until another clock pulse arrives. Three typical flow terminations
are depicted in figure 5.3. In the first case the flow from two separate actions
(A{ and A,) is terminated on the same state k. In the second case the flow
from Aj; is directed to state L In the third case the flow from A, is directed
back to state j.

actions
selector

o] [ [ [ |poen

state {

Figure 5.3  Portion of a typical flow chart.

In figure 5.1 it will be seen that an actions block is given as a separate entity
from the system-state memory, even though the actions block will normally
contain flip-flops. If one adopts the classical definition of the state of the
system as being determined by all flip—flop variables, then the actions block
could also contribute to the system state. The following example should make
the distinction between the two blocks clear. It is desired to increment a
twelve-bit counter, if a specified input exists, on each clock pulse. If the
counter is considered to be in the system-state memory block, it will add
twelve state variables, or 2% =4096 states to the system. The resulting state
diagram would be most unwieldy. If the counter is placed in the actions
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block, however, the above complication is avoided. Now.there is only one
device to be listed when describing system operation.

At this stage of design the controller that moves the system from one state
to another is not considered in great detail. This controller is the state-
transition circuit in figure 5.1, and will be considered in more detail when the
state-assignment problem is discussed. For the present discussion it is
reassuring to note that this combinational-logic circuit can in principle be a
read-only memory. For this case the input variables x;, y; and w; specify a
memory address. The contents of that address are the control signals to the
system-state memory. Standard combinational-logic design techniques can
also be employed for this purpose.

The flow-chart technique is a powerful design aid. It displays the decisions
and actions of a synchronous system in a clear manner, and also allows the
designers to take full advantage of the specialised integrated circuits that now
exist. There is no reason to limit the actions boxes to contain only digital
circuitry. In principle analogue devices could also be used, provided their
actions were completed in time interval C,. Thus the flow-chart method can
also be employed in the design of hybrid analogue/digital systems. The flow"
chart is also similar to the flow chart that is used in computer programming,
a good description of which is given by Knuth (1972). In most cases (depend-
ing on the required actions) it will be possible to produce either a computer
program or a hard-wired synchronous system from the same flow chart. The
relation of the flow chart to a computer program should be clear from the
above description.

5.3.2 Phase design

The specification of a synchronous system usually involves a detailed descrip-
tion of the system in various phases of operation. For example, a data-
retrieval system could have a data-acquisition phase and a data-transmission
phase. A natural way of approaching this sort of problem is to break the
system down into a number of phases, design a flow chart for each phase, and
then to link these phases with a final flow chart. This approach enables the
designer to solve a number of small problems, rather than one large over-all
problem. The same sort of procedure is used in computer programming,
Various sub-routines are written and debugged. These sub-routines are then
linked by a main program which, in some cases, is quite short.

This method will be illustrated with the following example.

Example 5.1

Design a synchronous system that will record and transmit information
related to signal x;. Signal x;—the output of some physical-parameter-to-
frequency transducer—is assumed to have a one-to-one mark-to-space
ratio; that is, it is a square wave. A control signal x, is also provided. When
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x =0, the system is required to record the highest frequency that is reached by
x;. During this time the system output z is to remain at zero.

When x; goes to one, the system is required to produce an output z that
is a square wave. The frequency of z is the (highest) recorded frequency of
x; during the time when x,=0.

In this example the phases of operation are evident. The first phase (x, =0)
will be called the acquisition phase, and the second phase (x,=1) will be
called the transmission phase. The acquisition phase will be considered first.

Recording the highest frequency of x; is equivalent to recording the
shortest period of x;. As x; is a square wave, the shortest half-period could
also be recorded. The half-period measurement is convenient, as it allows a
measurement to be made during x; =1, say, and allows for data updating to
be done during x, =0. The half-period of x; can be conveniently measured by
counting pulses, as long as these timing pulses are at a much higher frequency
than x;. The timing pulses themselves can be used as clock pulses for the
synchronous system in order to simplify matters.

With these thoughts in mind, a catalogue of medium- and large-scale
integrated circuits is consulted. It is found that counters, data registers, and
digital-magnitude comparators are readily available, and so can be used
in the actions block of the system. The frequency requirements for the clock
pulse (which will be a function of x, and the required system accuracy) will
indicate which logic family to employ.

A preliminary flow chart for the acquisition phase can now be constructed.
Refer to figure 5.4 for details of the construction as the chart is developed.
The principal state for this phase will be called acquisition, and is entered at
the top of figure 5.4. An actions decision is then made on the basis of x;, as
shown. If x; =1, the appropriate action will be to increment a counter,
whose running count is N;. Notes of the meanings of the various flow-chart
symbols are made at the bottom of the chart. If x; =0, an actions variable w,
is inspected. This variable is the output of the magnitude comparator, which
compares the counter (N,) to the data register (N,). If w; =1, N; <N, and
the data register should be updated. If w, =0, the data register should not be
disturbed. This assignment for w; has been arbitrarily chosen. In both cases,

acquisition
X1l T
10

Wi
step My 10

] Pv‘»/vz] IN,=0|
| Ny = count in counter

_ N, = count in data register

=0ifN, 2 N,

Figure 5.4  Preliminary flow chart for the acquisition phase of example 5.1.
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the counter should be reset (N, =0). This information is added to figure 5.4.
On close examination of the flow chart, however, several snags are dis-
covered.

(1) For x; =0, w; =1, the N, count cannot be both transferred correctly
and reset at the same time.

(2) On the second pass through the x; =0 condition, w, will certainly be
at 1, since N; =0<N,. Hence N, will be set to zero during this pass.

(3) There is no provision for flowing from this phase to the transmission
phase when it is called for (x;=1).

The first and second of these can be overcome by introducing another actions-
selector variable, w,. This variable will be used to guide the flow properly
when x, =0. On the first pass, let w, =1, and compare N to N». IfN;<N,,
N will be transferred to the data register. Also, set w =0. On subsequent
passes (when x; =w;=0), reset the counter to zero. A convenient place to
set w, =1 is in the x; =1 flow path. The resulting flow graph is shown in
figure 5.5.

acquisition (y=1}
X2
| 10 x
see 10
figure w2
58 Step IV
w':P: i W1I 10
10 Ny=0
Ny=N.
N, = count in counter w,=1if Ny< N
No= count in data register =Qif Ny2 N,

wo = actions — path selector
Figure 5.5 Final flow chart for the acquisition phase of example 5.1.

The above solution, which overcomes snags 1 and 2, is relatively straight-
forward. No claims to uniqueness are made, however. There are many other
methods that could also be used to overcome these snags. For example,
more states could be created. In fact, the w, variable may be considered as an
additional state variable. The point is that, from the many possibilities that
exist, a solution is desired that is (a) simple to implement and (b) simple to
describe on a flow chart. The optimal solution in many cases is a matter of
personal taste.

The final snag to be overcome is the provision of a means for getting to the
transmission phase. Remember that, on every clock pulse, flow takes place
from the acquisition state to an action path and then back to the acquisition
state. It is only necessary to query the x, variable before proceeding to the
x decision. The result is shown in figure 5.5. The result of what happens when
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x2=11s not known at this stage, and so its output is directed to some sub-
sequent figure. The design of the transmission-phase flow chart is considered
next. It would be a good plan to re-use the counter, data register, and magni-
tude comparator, if possible, to simplify the design. A toggle flip-—flop will
also be needed. This flip-flop changes state upon the application of a clock
pulse. It can be formed by setting J=1, K=1ina JK fipflop, for example.
The central idea will be to increment the counter until it reaches N 2. At this
point, toggle the flip—flop (whose output will be z) and reset the counter. The
design is straightforward, and the resulting flow chart is shown in figure 5.6.
Once again the flow from the transmission phase to the acquisition phase
has been left for some subsequent figure. The flow graphs for the individual
phases are now complete.

transmission (y = O)

1‘_see
igure
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toggle the 2
| tiip—flop | [5“’” ""—l
| —

Ny = count in counter wy=1ifM <N,
Ny = count in data register =0ifM 2 N,

Figure 5.6  Transmission-phase flow chart for example 5.1.

5.3.3 Inter-phase linkages

The next portion of the design to consider is the linking together of the above
two phases. The link from the transmission phase to the acquisition phase
will be considered first. The best time to leave the transmission phase is
when x; =0. If transfer to the acquisition phase was made when x; =1, a
spurious count would then be recorded. In passing to the acquisition phase
it is also necessary to reset the counter and the z and w, flip—flops to zero, and
to set the data register to its maximum value. This latter step will ensure that
the data register is started properly (if the data register were set to zero, this
value would be recorded as the minimum half-period). The resulting linkage
is shown in figure 5.7. Note that two of the paths have been annotated.
Labelling such as this can be of real value in understanding the operation of a
flow chart at a glance.

Only one possibility for the inter-phase linking has been shown. In general
there will be a number of possibilities. New states can be created, as well as
forming new w; actions variables. However, simplicity of design and ease of
understanding should again form useful criteria in finding the optimum
linkage. The link from the acquisition phase to the transmission phase is
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transmission (y=0)
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Figure 5.7 Linkage from the transmission phase to the acquisition phase.

considered next. The main point to check is whether N, should be trans-
ferred to N, during this transition. A realisation of this linkage is given in
figure 5.8. Note that, if Nyshould be transferred to the data register, use is
made of the acquisition state again before completing the transition to the
transmission state. Figure 5.8 is in many ways similar to figure 5.5.

acquisition (y=1)
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fransmissiongy (y=0)

N, = count in counfer wy =1if Ny<No
N, = count in data register =0if 2N,
wz = actions —path selector

Figure 5.8 Linkage from the acquisition phase to the transmission phase.

5.3.4 Initialisation

Consideration is now given to the initialisation or starting-up of the system.
It is logical to assume that when the power is switched on the system should
proceed from some initial state to the acquisition phase. In general, initialisa-
tion is important as it is impossible to predict the values that the flip-flops
(and counters) will go to when power is first applied. One must take definite
action to ensure that all flip-flops are at their correct starting values. In
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practice simple starting-up circuits are employed. For example, a series
resistance—capacitance network between the supply rails will provide an
exponentially increasing (or decreasing) voltage that is sufficient to preset or
reset flip—flops at first, and then to have no further influence. For the present
example, the starting state can be made the same as the transmission state,
under the assumption that x, =0 at the start. The system will then make an
inter-phase transition to the acquisition state, during which N,, z and w, are
reset. If there is a possibility that x,=1 when the system is started, then a
more complicated starting plan will have to be devised.

5.3.5 Circuit realisation

In this example two different states are used in the flow chart. As the states
are defined by flip-flops, then, as 2! =2, one flip—flop will be necessary. If
five to eight states had been used, then three flip—flops would be necessary,
and so forth. The assignment of binary numbers to the states is called the
state-assignment problem. This problem in general is difficult to solve. Some
useful guide-lines will be given in section 5.5. For example 5.1, however,
only one state flip—flop y is involved, and so there are only two possible state
assignments. Recall that at switch-on it is desirable to be in the transmission
state. Nearly all flip—flops have a reset facility; some also have a preset
facility. Thus the transmission state will be defined by y =0, which leaves the
acquisition state to be defined by y=1.

Having decided on a state assignment, the system can now be put into
hardware form. Attention will first be directed towards the state-transition
combinational-logic circuit. At this point it will be assumed that y is to be
stored in a JK flip—flop (details of which are given in chapter 3). Referring
to figure 5.7, it is seen that the flow from the transmission (y =0) to acquisition
(y=1) state occurs when x;x; =00. Hence by combining the condition for
transfer and the initial state in an AND gate

Jy=>_61>_6257

Next, referring to figure 5.8, the condition for transfer from the acquisition
(y=1) to transmission (y=0) state takes place when

X2X1 +XZ)_CIW2 +X2)_61W2W1 =1
This result, when combined with the acquisition state, gives
Ky = (XzX‘ + X2)?1W2 + X2§1W2W1)y

The circuitry resulting from these equations, together with a starting-up
circuit, are shown in figure 5.9. It turns out that due to the nature of the J-K
flip—flop the y and y variables in the above two equations are not needed in
this example. They have been included, however, to illustrate the general
technique of determining the state-transitional logic. Map factoring and
other combinational-design techniques can be used to modify this logic,
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Figure 5.9 State-transition circuit for example 5.1.

if desired. As races and hazards are not important, many levels of gates can
be employed in this logic block. However, it should be kept in mind that,
if there is a direct relationship between the logic and the flow graphs, the
increased understanding that results could well outweigh the advantage
of a complicated gate arrangement that saves a gate or two.

The actions portion of the system is considered next; figures 5.5, 5.6, 5.7
and 5.8 are the relevant ones. At the start of this design the states should be
labelled for clarity. For example, y =0 should be put beside the transmission
state. Each actions function is considered in turn. The counter is a useful
device to begin with. Referring to figures 5.5 and 5.6, the counter is incre-
mented when

yXox1 +Pxowy =1
The counter is reset when
y)_cz)_clwz +ﬁsz1 +y2221 +Ky= 1
(the left-hand terms come from figures 5.5, 5.6, 5.7 and 5.8, respectively),
where K, is the flip—flop input that was derived earlier. The resulting circuitry
for the counter is shown in figure 5.10. The w, variable is considered next.

This variable is a flip-flop (a set-reset asynchronous flip—flop, say) that, from
figures 5.5 and 5.7 has the excitation equations

SET =yX,x;
RESET=y32)_(1W2W1 +)—/'22.)_Cl
The logic for this flip—flop is depicted in figure 5.11.

The w, variable is the output of the magnitude comparator, which com-
pares the outputs of the counter and the data register. The data register
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y cP reset
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Figure 5.10  Counter logic for example 5.1.

W memory

Figure 5.11 Logic for w, of example 5.1.

accepts fresh information from the counter when
YXX WaWq 4+ yXaX 1 wowy (=yXwow)=1
It is set to its maximum value when
JX%1=1

The above components are shown in figure 5.12.

X a:/\ enter )
2—] data
[LZ] l J
data 2| magnitude
register counter comparator | =1
~ set to max

Figure 5.12  Additional logic for example 5.1.
Finally, the output flip—flop z is considered. It is reset when
yx,%, =1
and is toggled when

_)7)62"—\71 =1
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Circuit details are shown in figure 5.13. The reset facility (which is normally
asynchronous) on the z flip—flop has been used to simplify the design. This
means that the z reset will start as soon as yX,X; = 1. If synchronous reset is
desired, additional clock gating will be necessary. In general, a feature of this
design method is that a mixture of synchronous and asynchronous control
can be used.

X cp

y
wy

1=k =
X

Figure 5.13  Output logic for example 5.1.

cP

It will be noticed in this example that circuit duplication exists. For
example, the expression yX,x, appears in figures 5.10 and 5.11. It should be
mentioned that if the system is to be built on a modular basis the duplication
of gates on separate boards can be desirable. Fewer inter-board connections
may be required. In other cases, one of the gates may be eliminated.

Although the circuit realisation appears to be complicated, it bears a direct
relation to the flow charts and, in fact, is derived by inspection of the charts.
In practice the realisation can be quickly obtained, which is another advant-
age of the flow-chart technique. If the system should develop a malfunction,
the fault can be quickly located with the aid of the related flow charts. This
fault-finding aspect again emphasises the need of producing a well-labelled
flow chart, the operation of which is simple to follow.

5.4 Pictorial aids

5.4.1 State-transition diagram

In some cases the specification will not require actions to be performed in
moving between the different states. In this situation the flow chart reduces
to a state-transition diagram of the type described by Mealy (1955). This dia-
gram (which is similar to the one developed in chapter 4) is introduced by
way of the following example.

Example 5.2

Design a synchronous system that will recognise the input sequence x=0,
0, 1, 0. The output z is to become one when the final zero of the above pattern
appears.

Solution The procedure starts with identifying the flow for a correct input
pattern, as shown in figure 5.14a. The next step in the solution is to fill in the
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Figure 5.14  State-transition diagram for example 5.2.

state-transition diagram for the other possibilities, with the idea of re-using
states whenever possible. If the input should be at one when moving from
state a, for example, the flow can be conveniently returned to state a. Note
that the solution in figure 5.14b allows for pattern overlap. That is, if the
input pattern should be x=0,0, 1,0, 0, 1, Q, an output of one will occur at
each of the underlined input bits. In this example re-use is made of existing
states in considering all possible transitions, so that only five states are
necessary. Three flip—flops will be required.

This example can also be tackled with the flow-chart method. Various shift
registers are available, together with suitable binary comparators. A suitable
flow chart is shown in figure 5.15. The shift register, which is in the actions
block, provides all the necessary memory requirements. A system-state
memory is not needed as there is only one system state. In the above example,
the shift-register approach will require two more flip—flops than a formal-
synthesis approach (which uses four states). In fact, if one takes into account

Fw

compare

R = serigl—input parallel-  w = 1if Ny =N,
output shift register

N; = contents of #
N, = desired pattern

=0 otherwise

Figure 5.15 Flow chart for example 5.2.
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the ease of design and the ease of subsequent understanding of system
operation, the shift-register solution is more satisfactory. This solution is also
very flexible; the detected code can be easily modified.

5.4.2 State table

An alternative to the state-transition diagram is the state table as described
in section 4.4.2. Either representation can be used for designing synchronous
systems having no actions. The state table can be viewed as a tabular list of
transitions between states. An example of such a table for a synchronous
system is given in figure 5.16.

x;x;= 00 01 11 10 00 01 11 10

v v+ 1

s s z

S S1 82 S2 S3 1 0 0 0
S2 53 Sz s3 53 0 0 0 0
S3 S1 S2 — S4 0 0 - 0
Sa 53 S1 52 Sa 0 0 0 0

Figure 5.16 Synchronous state table.

The small letter s stands for state. The superscript v indicates the clock-
pulse number. Here the v+ 1 clock pulse directly follows the v clock pulse,
where v is an arbitrary integer. The states are assumed to exist during the time
intervals D; and A, in figure 5.2. The subscripts are used to identify each
state that exists in the system. In this example there are four distinct states:
51,52, 53 and s,. The input variables x, and x, are given a Gray-code ordering,
in anticipation of future table factoring. By the use of figure 5.16 one can
identify the state transitions that will occur from one clock pulse to the next.
For example, if the system is in state s, at the arrival of the tenth clock pulse,
and during this time x,;x, =01, then at the arrival of the eleventh clock pulse
the system will be in state s,. Note that the system does not necessarily change
state from clock pulse to clock pulse. For example, if state s; should exist
and xx, should stay at 00, the system will remain in state s; from clock pulse
to clock pulse. In figure 5.16 every next state is a stable state; there are no
unstable states in this figure. Also multiple-input transitions are allowed
from one clock pulse to the next, so that the fundamental-mode assump-
tion of asynchronous circuits is not needed. In figure 5.16 the blank that
occurs in the third row indicates a don’t-care condition. If one or more
don’t cares occur in the table it is referred to as an incompletely specified
state table. A don’t care will arise when the designer knows that, for some
reason, a certain input is impossible when the system is in a certain state.
Because of device failures, noise, etc., there is always a possibility that the
forbidden input combination will arise sooner or later. When it does, the
designer might well want to know about it. To do so, the system could be
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specified to transfer to an emergency state, given the present state and the
forbidden input. This emergency state would then provide some indication
(flashing a light, or stepping an error counter, for example) that all was not
well.

An advantage of the state table is that it forces the designer to consider all
input and present-state combinations, in that every entry in the table should
be filled in. A disadvantage of this table is that the designer loses a pictorial
view of the flow that exists between the states in the system. For example,
consider the state-transition diagram in figure 5.17. The input and output

Figure 5.17  State-transition diagram example.

variables have been omitted from this figure for the sake of clarity. Suppose,
however, that the input patterns occur at random. Then, regardless of the
starting state, it is clear that sooner or later the system will flow to the three
states d, e and f'as a consequence of the transition from c to e, which has no
corresponding return path. The group of states a, b and ¢ can only function as
transient states. This knowledge is gained quite easily from the state-transi-
tion diagram, but it would be difficult to extract from a state table. Of course
the designer can prepare both a state-transition diagram and a state table, if
desired. There is obviously a one-to-one correspondence between the two
representations. Given a state-transition diagram, its state table can be easily
derived, and vice versa.

On the state table in figure 5.16 the system output z is also displayed. The
don’t-care next-state blank gives rise to a corresponding blank in the output
section of the table. There can of course be more than one output signal.
Only one output variable is shown for the sake of clarity.

5.4.3 Equivalent-state detection

It sometimes (but not very often) occurs that more states are used in the
synchronous state table than are necessary. Recall that for this case all states
are stable. For example, if two rows in the state table of figure 5.16 are as
shown in figure 5.18, then it is obvious that s, is equivalent to s, and so one
of these rows can be removed. If the second row is removed, then s, can be
replaced by s, in the remaining table. It is beneficial to remove these redund-
ant rows since the number of states is thereby reduced, which can sometimes
lead to a reduction in state variables. Recall that n state variables can
accommodate 2" rows or states in the state table.

Matters are usually not as straightforward as in the above example.
Consider the two rows of figure 5.19, whose outputs are the same. Is s¢
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sli Sl)+l Zv
St S4 S5 S4 Ss 1 0 1 1
Sz S4 S5 Sa Ss 1 0 1 1

Figure 5.18 State table. Example of equivalence.

v+1

s¥ s
S1 Sa Ss Sa $s
S2 Sa Ss Se Ss

Figure 5.19 State table. Example of possible equivalence

equivalent to s, (s; =s,)? It is seen that they are only equivalent if s, is
equivalent to s¢. Suppose also that the two rows of figure 5.20 appear (having
identical outputs) in the same table. Is s, =54 ? Again, the answer is yes only if
51 =s;. Here the argument has gone full circle. That is, s; =s; if s4 =56 and
54 =S¢ if 5; =s,. At this point, two assumptions can be made. First, s; =s;.

v v+1

N S

Sa $1 $3 $3 S3
S $2 53 S3 53

Figure 5.20 State table. Example of possible equivalence.

This assumption would result in s, = s, and so states s, and s could then be
removed from the table. Second, s, # s,. This assumption would then imply
that s4 #se, and so all four states would remain in the table. Since the object
here is to use as few states as possible, the first assumption (s; =s,) is prefer-
able. Two states then become redundant, and can be removed.

Checking for equivalent states can be facilitated through the use of the
implication chart method of section 4.4.3.

Recall that two states are not equivalent if their outputs differ. Outputs
should be checked first to establish possible equivalences. A different implica-
tion chart is then formed for each output requirement, and the procedure in
section 4.4.3 is followed. Finally, it is generally worth while to relabel all
non-redundant states at the end of the procedure in ascending order (for
example, 4, B, C, D). A non-redundant state table is them formed using these
relabelled states.

A technique for eliminating redundant states has been given. In theory
there is no reason why a designer could not use ten or a hundred redundant
states in the initial specification, and then remove these states with the above
technique. There are two reasons why this approach is not good. Firstly, the
use of many redundant states is time-consuming, in both the initial specifica-
tion and the removal of equivalent states. Secondly, in dealing with a large
number of states there is a greater chance for human error to occur. If a
non-redundant state were accidently eliminated, for example, it could
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prove very time-consuming to discover the error. For these reasons it is a
good plan to re-use states when forming the initial specification. If the states
are re-used judiciously, then, when checking for redundant states, only a
few tests need be made. Recalling that states with different outputs cannot be
equivalent, the testing can usually be done by inspection. An example of
state re-use was given in example 5.2.

5.5 State assignment

In the preceeding sections of this chapter the concept of a state has been
discussed, as well as a technique for removing redundant states. The next
matter to consider is how to assign or label the states with the system state
variables y;. These variables are normally flip—flop outputs and so, to change
the system from one state to another, the states of the necessary flip—flops are
changed.

With »n internal variables there are 2" different bit patterns (or words).
There are 2" different possibilities of assigning a word to the first state, 2" —1
ways of assigning one of the remaining words to the second state, and so on.
There are certain redundancies, however, which lower the possibilities.
Details are given in section 4.4.6 and, in particular, figure 4.28. The point to
observe is that the number of possible assignments grows rapidly with n.
From this wide variety of permutations, the state-assignment problem is to
establish some suitable criterion that will reject all but a few (or possibly
one) of these assignments, and then to determine the assignment that ‘best’
meets this criterion.

In the past the criterion has usually been firstly to minimise the number of
flip—flops or memory required, and secondly to minimise the combina-
tional logic (or number of gates). In some cases this criterion will also mini-
mise cost. For example, if the gates and flip—flops have to be built using dis-
crete components then the cost will be relatively small with this criterion.

With the integrated circuits of today, however, a different criterion should
be established. For example, combinational-logic gates of identical type are
usually packaged together in a chip. If one NOR gate and one NAND gate
are required, two chips might be necessary, whereas, by judiciously redesign-
ing the logic, it might be possible to use three NAND gates in one chip. With
regard to memory storage it might occur that either three discrete flip—flops
(8 states) or a 5-bit shift register are required. The former would require two
chips (assuming dual-flip—flop chips), whereas the latter can be obtained in
one chip. As the reader can see, emphasis is swinging towards the use of a
minimal number of chips in the design. This criterion is important in both
minimising cost and improving reliability. The cost is also minimised because
of the associated printed-circuit-board cost. Surface area on the board can
cost several times more than the chip itself, if one takes into account the
design time, manufacturing costs, etc. Hence the use of as few chips as
possible will minimise this cost. In many cases the drain current from the
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power supply is also minimal when the fewest number of chips is used. From
a reliability point of view, the fewer the number of soldered joints the better.
When one takes into account that with a 14-pin chip the power-supply
connections represent over 14 per cent of the total connections it is seen that
the smaller the number of chips the better.

From the above discussion it would appear that the optimal design strategy

is to use as few chips as possible, and this is indeed the case in many circum-
stances. For example, in designing a system that will be produced by the
thousands or millions, elimination of even one chip can result in substantial
cost reduction. The operation of the system does not have to be well under-
stood or easy to follow. If a fault occurs it is simply necessary to remove (or
unplug) the system and to put a good one in its place. Usually systems of this
nature will be built on a modular or plug-in basis, and so are relatively easy
to “fix’. The faulty system is then sent back to the factory for repair or, at times,
simply discarded. The repair department will have the skill and experience
necessary to effect the repair.

The state-assignment problem for this task is extremely important, since
it affects not only the amount of logic required for the internal memory but
also the amount required for the output circuitry. Up to this time there is
no general method that, when used, will guarantee an overall minimum-gate
design. In practice a variety of techniques are used. The reader is referred to
Hill and Peterson (1968) for a discussion of these techniques.

The other case of interest is the situation where one or possibly a few of the
units are required. This case can arise in designing in-house special equip-
ment. For example, an automated test system may be required, which is not
complicated enough to warrant on-line computer control, but nevertheless
employs sequential logic. In the state assignments for such systems the human
factor becomes very important. If one can determine a state assignment that is
simple to understand and follow, the following items will be optimised with
respect to human factors

(1) design time

(2) design modification

(3) system description in reports
(4) repair time.

The system will not usually be optimised for minimal chip count and hence
for chip cost under the above assignment. But as far as the total design cost is
concerned, this assignment is usually optimal. With respect to item 1, for
example, the cost of one man-hour exceeds the cost of most chips. With
regard to item 2, it is often required to modify a system to provide new capabil-
ities. If the state assignment is simple, it should be simple to modify. On the
other hand, if the assignment has been fairly complicated, a completely new
assignment might be necessary for the modification. There is also the problem
of communicating the system mode of operation to other people. A simple
state assignment will facilitate this task, as item 3 suggests. Finally, there is the
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debugging and repair aspect of item 4. The need for a simple state assignment
here should be self-evident. The means for meeting these criteria is implicit
in the flow-chart method.

To determine a suitable state assignment for human use, consideration
should be given first to the various phases of operation. These phases should
be allocated inter-phase flip—flops that are used only for phase control. The
operation of the system within a phase should be determined by a different
set of flip-flops, which are re-used for every phase. By this means it is easy to
determine the system state at each step. The phase flip—flops give only phase
information, and the other flip—flops give only intraphase information. This
two-level approach is especially useful in describing the system, because a
different flow graph can be prepared for each phase. The phase flow graph
can be very detailed, and will enable the reader to concentrate on just one
phase of operation rather than on the complete system. A phase-linkage
flow graph can also be prepared, in which each phase is treated like a state
on the phase flow graph. For instance, in example 5.1 there are two phases,
and so one inter-phase flip—flop will be required. No intraphase flip—flops
are required. In general, if there are p phases and g {(maximum) intraphase
states, then M + N flip—flops will be required, where

2M—1<p<2M
2N—1<q<2N

This state-assignment technique meets all of the criteria listed earlier. It is
simple to develop—in many cases the design can be completed (the states
labelled) on the system flow chart itself.

5.6 Examples

This section contains both worked and unworked examples that will illus-
trate many of the salient features and some extensions of this chapter.

Example 5.3

The logic system of figure 5.21 is to be constructed only once. It might be
necessary to add more phases at a future date. Find a state assignment that
is suitable for this system.

Solution In figure 5.21 it is seen that the flow chart has already been par-
titioned into phases, as indicated by the letters. Note that phases to start up
the system properly and to halt the system are included. For this problem two
classes of flip—flops will be used. The inter-phase flip-flops M; will direct the
flow from phase to phase, whilst the intraphase flip—flops »; will be used to
control the flow in a particular phase. It is seen that phases 4 and B have the
most states (nine), which indicates that four intraphase flipflops N N, N3Ny
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will be required. These flip—flops are re-used in each phase. Therefore,
provision must be made on the flow chart to reset the N; when moving from
one phase to another. This in turn implies that the states 4, B; and D; will
be partially defined by N;N,N3;N,=0000. The assignment of the N; in a
phase is fairly arbitrary. An often-used rule of thumb is to arrange adjacent
states within a phase such that only one of the N, changes, wherever possible.
This strategy will tend to minimise the amount of logic (and wires) needed for
proper control of the N; flip-flops. Thus, B, and B; might be (partially)
defined by N;N,N;3N,=0001 and 0010.

A B
far Az B2 B3

L d L] L] L]

. L] * L[]

L] L] L] *
Ae!'!'t LN Ag Be!l! W By
go to By go to Bz goto 4 gotoD,

C, initiolisation D, halt
go to 4y
go fo A,
goto D,

Figure 5.21  Flow chart for example 5.3.

The inter-phase flip—flops M; are considered next. To allow for future
expansion, three M; will be used. Then four surplus phases will exist. The
obvious M; to use for C; is M M;M;=000, which can be accomplished
quite simply at switch-on by resetting all M;. The assignments for the other
phases are arbitrary, except that the logic is reduced if only one M; is changed
in passing from one phase to another.

In this example every state is identified by the pattern of ones and zeros
in the expression M; M, M3N N,N3N,. In figure 5.21 20 states are included.
With seven variables it is possible to have 128 states, and so a usage efficiency
of 16 per cent exists. This is fairly low, but future expansion is possible, and
the action of the circuit is quite simple to understand.

In general the numbering of the states can be likened to the numbering of
sections and chapters of a book. In fact, an instruction manual could be
written such that each chapter is named after a phase, and the sections of
each chapter give a state-by-state description of operation within the phase.
For a very large system, a third level of memory variables can be employed.
These variables would correspond to the names of books, with each book
having the correspondences given above.
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Example 5.4

Determine the flow map for a synchronous system whose output will go to
one when any of the sequential input patterns 0101,0011, 1001 and 1011 occur.
The system is to go to a rest state for all other input patterns and for all
subsequent inputs.

Solution The solution is started by laying out a state-transition diagram for
the input pattern 0101, as shown in figure 5.22a. Here the successful transition
flows from left to right. The circles represent states, and the boxes represent
final rest states. Three boxes can immediately be entered, as shown. The next
pattern 0011 is added to this diagram, by making use of one of the states for
the previous pattern. The result is shown in figure 5.22b. In a similar manner

(c)
Figure 522 Transition diagrams for example 5.4.
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the other two patterns are added, the result being figure 5.22c. The states
have also been labelled in this figure.

The next step is to form a flow map to check for redundancy. The flow
map corresponding to figure 5.22¢ is shown in figure 5.23a. The map immedi-
ately shows that s, sg and s, , are equivalent. The flow map then indicates that
s3, S7 and sy, are equivalent. Replacing sg and s, , by s4 and s, and s;; by s3,

v+ 1 v v v+1 v

§ s b4 N s -4
x=0 1 x=0 1

So Ss S9 So Ss Sg

Sy $1 S1 Sy S1 $1

Sz $1 S3 Sz 51 S3

S3 S1 Sa S3 51 S4

Sq S1 S1 1 Sa S1 St 1

Ss 52 Se S5 52 Se

Se S7 S1 Se 53 $1

S7 Sy Sg So S10 S1

Sg S1 s1 1 S10 S3 S3

So S0 51 (b)

S10 S11 S11

S11 St S12

Si2 S S1 1

(a)
Figure 5.23  Flow maps for example 5.4.

the reduced map of figure 5.23b is obtained. This map can be checked for
redundancy by first comparing s, and sy, s, . . ., S, then comparing s; and
2, S3,..., So, and so on. Recalling that s; and s, are distinct, it is readily
established that there are no more redundancies. For example, s, =s5 only
if s, =55 and sq=s6. But 53 # 55 since sy # s,. Thus, s #s5. Finally, a reduced
transition diagram can be drawn from this map, as indicated in figure 5.24.
The states can be renumbered with consecutive integers, if desired.

This example illustrates the interplay between the state-transition diagram
and the flow map. In checking the flow map for redundancies it is easily
established that there are (n—1)(n—2)...(2)(1)=(—1)! checks to make.
Therefore it is desirable to remove most of the redundancy on the initial

1 1
5 6 1
Q
0 of A Fon
1
0 2 3 ; 4 )z=1
(o]
1 1 0,1
]
9 10

Figure 5.24 Final state-transition diagram for example 5.4.
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state-transition diagram. The remaining redundancy can then easily be
found from the corresponding flow map.

Example 5.5

Find a state assignment for the previous example such that transitions be-
tween adjacent states (as shown in figure 5.24) involve the change of only one
of the four variables, except for transitions to the rest state s;. (Hint: Place the
states on a four-variable Karnaugh map.)

Example 5.6

In a certain flow chart, states are used for two purposes. The first set of states
A; is used for making binary decisions. A second set of states By, B,, ..., Bg is
used for various actions. The outcome of several A4; leads to one of the B,;.
The probability of occurrence p; of each B; is also known. In this example,
p1=0.08, p,=0.14, p3=0.16, p,=0.18, ps=020 and ps=0.24. Find an
arrangement of the 4; such that the operation time of the system is minimised.

Solution The probability numbers indicate how often a certain path will be
followed. For example, B; will occur eight times for every hundred starts. Let
N; equal the number of states visited before reaching a B;. Then the problem
is to arrange the A; such that the sum XN ;p; is minimised. This problem has
been dealt with by Knuth (1972). One interpretation of his solution is as
follows. The probability numbers (scaled by 100) are put in a row, as shown in
figure 5.25a, in ascending order. The two lowest numbers (8 and 14) are
merged together, as shown by the slanted lines below the numbers. The sum

8 14 16 18 20 24

100 i 123456

p; 8 14 16 18 2024
{a) N 33 33 22

Ay
(b)
a Ay
A, Ag
Bs Bg

B, B, Bs By
{c})

Figure 5.25 Trees used in example 5.6.
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of these numbers (22) is placed at the focal point of the slanted lines. This sum
is now treated as a single row number. The result of this operation is to
reduce the number of row numbers by one. The procedure is repeated over
and over, until only a single number remains. If at a particular stage the
lowest number occurs three or more times, arbitrarily pick two of the entries
and proceed as above.

The resulting tree can be put in a more presentable form as follows. A list
is made of the probability numbers and their path lengths N;, as displayed in
figure 5.25b. In general N; should always decrease in moving from left to
right. The final tree is constructed by moving through this list from right to
left. B for example has a path length of two, and so can immediately be drawn
as shown in figure 5.25¢. The other B; are entered in descending order, as
indicated. At each node in the tree a different A; is entered to complete the
solution.

Example 5.7

Using the technique of example 5.6, find a minimal tree for p; =0.02, p, =0.04,
p3=0.06, p,=0.08, ps=0.12, ps=0.14, p; =0.16, ps =0.18 and py=0.20.

Example 5.8

A serial data message is sent over a data channel for control purposes. The
message consists of the pattern 01 repeated eight times (for synchronisation
purposes), the identification word 0011, and finally a control word 00 x x
(each x is either a zero or a one), which is used to initiate one of four actions.
A clock pulse synchronised to the input data is also assumed to exist. An
alarm is to be turned on if any deviation from the above sequence occurs.
Design a system that will meet this specification.
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Practical Design
Considerations

6.1 [Initial specification

In system design a good starting point is to regard the system as a black
box. The purpose of the black box is to accept certain inputs, process them,
and then to produce certain outputs. In this sense the system performs a
Junction, similar to the case where g(x) is a function of x in mathematical
analysis. Some initial specifications are literally a listing of inputs on the left
side of a sheet of paper, and the corresponding outputs on the right side.
Or perhaps a collection of waveform-timing diagrams are to be realised.
At this stage one should not be concerned with the mass of detail that will
follow later. The important thing is to get the functional description right.

Consideration should then be given to the front-panel design and operator
controls. One should decide what to display, the type of display (for example,
analogue or digital) and the accuracy required. The trend in operator controls
is to reduce their number to a minimum. For example, a fine frequency-
tuning control could be eliminated by a phase-locked loop in the system.
The subject of human factors should also enter at this point. Items such as the
size, colour and brightness of the displays, the types and grouping of the
controls, and how often displays should be updated can be decided. If pos-
sible, a drawing of the front panel should be produced. Too often this part
of the design is left until after the detailed circuit design. Then front-panel
modifications add to the design cost.

6.2 Detailed design

Having achieved a functional specification, the next step is to narrow down
the enormous number of realisation possibilities. The first objective is to
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decide on what technologies will be used. From the initial specifications
one can say roughly what speeds, power consumption, volume and working
environments will be necessary. These considerations will in turn suggest
certain technologies. For example, if high speed is a prime requirement then '
emitter-coupled logic rather than fluidic logic should be used. Usually the
appropriate technologies can be determined quite rapidly.

The next step is to produce a block diagram for the system. Enough blocks
should be included so that each block will require only a moderate design
effort. Each block should be identified with a word description of its function
and the technology that will be used. Typical examples are ‘voltage-con-
trolled oscillator, discrete components’ and ‘microprocessor, integrated
circuits’.

The design of each block is then considered in turn. Manufacturers’
catalogues should be used here to locate any special-purpose devices that
would prove useful. For example, a medium-scale-integration integrated
circuit that performs an up-down counter function is readily available and
can be used for a variety of applications. When looking at device specifica-
tions, it is important to define the use to which the device is put. For example,
if the system is to be mass-produced and speed is important, then the worst-
case propagation delay time should be used, rather than the ‘typical’ delay
time. All data sheets should be critically examined, including footnotes!
Certain types of ‘averaging’ can take place on data sheets. For example, a
one-to-zero transition may be significantly slower than a zero-to-one transi-
tion. On the data sheet, however, one may find only an ‘average’ transition
time. Again it is the worst case that is usually important, not the average case.
If the system is to be mass-produced, the question of second sourcing of the
special-purpose devices ought to be investigated. Some of these devices, and
indeed whole logic families, have been known to suddenly disappear.

Having identified the special-purpose devices, the next step is to produce a
flow-chart for each block (if applicable), as described in chapter 5. In establish-
ing a block flow chart, the designer usually has the relevant catalogues at
hand, and might require two or three design iterations for the block to make
it as efficient as possible. The importance of labelling states with meaningful
phrases cannot be over-emphasised at this stage. After the individual blocks
have been designed, a block-linkage diagram should be formulated, taking
care to include any buffering that might be needed between the blocks.

The next objective is a detailed schematic diagram of the system. Before
this diagram can be produced, the states on the flow charts must be assigned
binary numbers. Chapter 5 gives some guidelines for this state-assignment
problem. After the states have been assigned, a logic diagram for the system
should be produced. Using the techniques outlined in chapter 2, one can
minimise the combinational logic required, including the number of invert-
ers. Finally, a detailed schematic (or wiring) diagram should be made.
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6.3 Prototype development

The first objective is to make a breadboard unit that works. It is usually
possible to do this by developing the breadboard block by block. Each block
is constructed and tested. If the block does not perform satisfactorily, some
design modification will be necessary. When the blocks are working as
intended, they should be connected together to check that the overall system
performance meets the initial specification. Again, some design modification
might be required here.

The next objective is to add any needed input or output buffering to the
system. For example, if the system output is to be transmitted through a noisy
environment, a line driver could be added to the output. Or ifa digital input
is known to have noise errors, an error-detection (or error-correction) code
might be used for the input word. Suitable decoding will then be necessary
at the system input. These additional circuits should be added to the bread-
board. Then the system as a whole is tested to ensure proper working.

At this point it is convenient to make a drawing of the final circuit. Elements
should be labelled with their numerical values (for example, 4.7 kQ) but not
with symbolic labels (for example, R17). These labels will be assigned after the
printed-circuit boards have been produced.

6.4 Printed-circuit boards

The transfer of the breadboard design into printed-circuit form is advant-
ageous when more than two or three units of the system are required. The
repeatability of printed circuits is excellent. Therefore, if one unit works,
subsequent units should work as well. The other outstanding advantage of
printed circuits is that wiring errors are reduced to a minimum. This is not
the case with the point-to-point wire-wrap technique, for example, unless the
procedure is automated.

In the design of a printed-circuit board, the first step is to arrange the
components (including board connectors) on the board so that the wire
connections between the components will be reasonably short, subject to the
following constraints.

(1) All integrated circuits should point in the same direction (preferably a
direction parallel to an edge).

(2) All other components should be parallel to or perpendicular to the
direction of the integrated circuits.

(3) The sum of all wire lengths should be as small as possible.

Condition 1 is necessary in order to prevent component-insertion errors and
subsequent testing errors. Condition 2 allows a grid design system to be
used. The reason for condition 3 is to reduce mutual coupling and crossovers
to a minimum. Associated with 3 is the consideration of crossovers and what
sort of board to use. In some cases a board with printed wires on only one side
is sufficient. If a few crossovers are needed, these can be provided with wire
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links, which are inserted just like the other components. If the number of
links on a single-sided board is large, then a double-sided board (with plated-
through holes) should be considered. If the double-sided-board solution still
requires many wire links, then a multilayer-board solution ought to be
examined. There are many trade-offs in the selection of the best type of board.
The reader is referred to Dukes (1961), Coombs (1967) and Ross (1975) for
further details. The above design is usually done by trial and error, but can
also be solved by a computer-aided design programme.

In board fabrication the essential rule for successful results is cleanliness.
Never touch unprotected surfaces with bare fingers, make certain that sur-
faces have been rinsed well, and so forth. If difficulties arise, the reader is
referred to the troubleshooting book on printed-circuit design by Shemilt
(1974). If the board is to be used for a one-off application, it is likely that
modifications, especially additions, will be desirable later on. Accordingly,
it is prudent to leave some spare space on the board for this purpose. The
board layout should also take into account connections to and from the
board, as previously mentioned. A popular type of connector is the edge
connector, which in addition provides mechanical support for the board.
Another widespread technique is the integrated-circuit socket plug. The plug
is connected to ribbon cable (which consists of a number of coplanar wires
bonded together), and is designed to fit directly into an integrated-circuit
socket. These input—output sockets can be located at different board loca-
tions to ease board wiring requirements. Consideration should also be given
to the provision of test points on the board, for either manual testing or ATE
(automatic-test-equipment) testing. In the latter case a special multiterminal
connector could prove useful.

In the provision of power supplies to the boards, two general points can
be made. First, it is essential to have a good earth. Some companies use thick
wire braid for the earth lead from the power supplies to the board. If this
lead does not have a low enough resistance to both d.c. and a.c. signals, all
sorts of spurious coupling can occur. Next, it is becoming increasingly
popular to use on-board voltage regulators. These regulators are now avail-
able in integrated-circuit form at low cost. The idea is then to supply un-
regulated d.c. voltage to all board regulators. The same unregulated supply
can also be used for driving lights, relays, motors and so forth.

After the boards have been designed and constructed, they are tested. Since
the wire layout is different from that of the breadboard prototype, there is no
guarantee that the system will perform as before. It might be necessary to
compensate for speed effects with the addition of some capacitance at certain
points in the system. These speed effects (for example, wire propagation delay
times) will have more influence on asynchronous than on synchronous
systems, as discussed in chapters 4 and 5. If unwanted oscillation occurs, it
can often be stopped by the addition of ferrite beads to the board, especially
on the power-distribution printed wires. These beads have minimal effect at
d.c., but are quite lossy at high a.c. frequencies.
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When the board is working satisfactorily, the components can be given
symbolic labels as follows (for resistors). The resistor leftmost and upmost
(as viewed from the component side) is given the label R1. The board is then
scanned in the same manner as reading a book, and the scanned resistors
given the consecutively increasing labels R2, R3,... The other types of
component are labelled in a similar manner. It is also standard practice to
print the symbolic label next to the component on the board. The outstanding
advantage of this scheme is that components can be quickly located. The
symbolic labels are then added to the schematic diagram.

6.5 Testing and documentation

If many units of a system are to be produced, consideration should be given
to a schedule of tests at the completion of assembly of each unit. This schedule
is usually a compromise, since exhaustive testing of all input possibilities
(including front-panel controls) usually takes too long, but each control and
input line should be tested at least once to make sure it has been properly
connected. A greater range of input possibilities can be tested with automatic
test equipment (in a given time). Since this equipment tends to be costly, it is
only justified if a reasonably large number of units are produced.

In some cases the testing can be performed quite simply by a comparison
technique. The tester (man or machine) has a ‘standard’ unit that is known to
work satisfactorily and a schedule of tests. The output of the unit under test
is compared to the standard, the difference being required to lie within stated
bounds (as given in the schedule of tests).

In addition to a schedule of tests, an operation manual should also be
written. This manual should contain enough detail so that component errors
can be detected. The flow charts previously developed for the blocks can be
used to advantage, and possibly be included in the manual itself. If this is
done, the states ought to be labelled symbolically whenever possible. For
example, some typical labels are ‘starting-up’, ‘test for overflow” and ‘error
has occurred’. A clearly written operation manual is important for both the
system user and the repairman. Therefore, sufficient time should be allocated
for this task.

6.6 Conclusion

The above material is not intended as an intensive coverage of the design
procedure. Rather it is to point out some salient features that have been
gathered from practical experience. If these features (and their order of
development) are kept in mind, the amount of design time and effort will be
kept to a minimum.
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Appendix Logic Symbols

A wide variety of different symbols has been used to represent logic elements.
In this book American MIL standard symbols are used; these are shown in the
first column of figure A.1, which also shows the equivalent British Standard
symbols. The MIL symbols have the advantage of not requiring any character
within the outline to identify the gate function; this space is therefore available
to the designer for indication of gate type and/or location.

Symbol Current Earlier
used in British British
the text Standard Standard

AND gate
a0 g
:ﬂ— :D— OR gate
Do nor gate

:D—— EXCLUSIVE OR gate
—D-— —D»— INVERTER

Figure A.1
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action block 108, 110
action selector circuit 108
adjacency 13
allocation, state 71
AND gate 7
assignment, state 78, 116, 124,
126, 130
primary 99
race-free 98
secondary 99
asynchronous 31
asynchronous counter 38, 51
asynchronous reset 37,119
asynchronous set 37
asynchronous system 54
synthesis 68

binary coded decimal (BCD) 3

binary coded decimal counter 50,

51
binary comparator 29, 47
binary counter 38
binary decision 110
binary digit 2,3, 5
binary variable 6
bistable latch 34
bit see binary digit
block diagram 133
breadboard 134

carry output 50
chart, implication 74, 123
merger 77

chip minimisation 124
circuit, action selector 108
equivalent 9
iterative 22, 30
output 61,75, 85
startingup 116
state transition 108, 116
clear 33
clock pulse 31, 104
clock pulse cycle 108
clocked flipflop 33
code, binary 3
Gray 40,49
common map factor 23
commutative 7,8
comparator 29, 47
compatible states 78
complement 3, 8
Coombs 135,137
count, spurious 39
counter 38, 112

BCD 50, 51

binary 38

down 39

Gray code 40, 49
Johnson 43
multiple sequence 41
octal 43

reversible 41

ring 43

synchronous 39
‘switch tail’ 43
twisted ring 43
up/down 41
critical race 63, 78, 105
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data entry 45
data flip—flop 37
data register 112
De Morgan’s theorem 12
decimal, binary coded 3
decision, binary 110
degenerate feedback 87
delay 23
cumulative 39
flip-flop 37
propagation 63
Derusso 31, 53
design 68, 132
intuitive 47
phase 111
practical 132
sequential system 47, 109
design modification 125
design time 125
detector, equality 21
development 134
D flipflop 36, 37
diagram, merger 75
state transition 61, 119
timing 69, 70
waveform 70
Dietmeyer 18, 28
digit, binary 2, 3,5
digital system 1
discrete 1
display 132
divider, pulse rate 48
documentation 136
don’t care 20, 50, 61, 80, 121
don’t care alarm 20, 122
down counter 39
Dukes 135, 137
dynamic hazard 66

edge-triggered flipflop 34, 35
entropy 6

entry, data 45

equality detector 21
equivalence, implied 74

INDEX

equivalence of logical expressions
13

equivalent circuit 9

equivalent state 72, 90, 122

essential hazard 67, 89

essential prime implicant 16

excitation function 58

excitation map 58, 81

exclusive or 8§, 10

factor, common 23
complex 67
human 125,132

factoring, map 16

false state transition 65

fanout 24

feedback 32
degenerate 87
linear 44
non-linear 44

flip—flop 33
clocked 33,109
D 36,37
data 37
delay 37
edge-triggered 34, 35
JK 36
master-slave 35, 68
RS 33, 36, 83,98

RS 37
T 36
trigger 36
output 118

unclocked 33

flip—flop input expressions 50
flip—flop input map 60, 81
flip—flop state table 36
flip—flop storage of state variables

55, 60
flip—flop symbol 36
flow-chart 69, 107, 109, 120, 133
flow-chart symbols 112
flow graph 126
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flow map 59

incompletely specified 78
flow table, primitive 69
forbidden input 121
front panel 132
function, excitation 58

output 55, 86
functional description 132
fundamental mode 56, 104, 121

gate 6
AND 7
NAND 8
NOR 8
OR 7
practical 24
gating, output 61
general model, asynchronous 54
synchronous 107
generator, clock pulse 31, 43
short pulse 34
Golomb 44, 53
Gray code counter 40, 49

hazard 63
avoidance of 85
dynamic 66
essential 67, 89
static 65, 85, 88
hazard-free 66
Hill and Peterson 24, 28, 125, 131
Huffman 98, 102
human factor 125, 132

implicant 16
implication chart (table) 74,123
implied equivalence 74
incompletely specified 78, 121
initialisation 44, 115
input, forbidden 121

spurious 70
input change, multiple 56, 121

input expression 50
input signal 107
integrated circuit
internal state 55
inter-phase linkage 114
intuitive design 47

inverter 8§

iterative circuit

3,39, 104, 108

22,30

jamming 94, 99
JK flip-flop 36
Johnson counter 43

Karnaugh map 12
Knuth 111,130, 131

large-scale integrated circuit (LSI)
104, 108
latch 34, 46
level, logic 5
Lewin 18,28
Lind 101, 102
linear feedback 44
linkage, inter-phase 114
phase 126
loading 24
data 45
logic level 5

McCluskey 67,79, 102
magnetic storage 32
magnitude comparator 112
maloperation 32, 65
manual 136
map, excitation 58, 81
flip-flop input 60, 81
flow 59
Karnaugh 12
many variable 17
set/reset 84
output 62
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map factor, common 23
map factoring 16
margin, noise 6
mass production 133
master—slave flipflop 35, 68, 109
Matheson 6, 28
maximum length sequence 44
maximum rise time 35
Mealy 63,102, 119, 131
medium-scale integrated circuit
(MSI) 104, 108
memory 32
state 108
mergeability 75
merger, multiway 76
output consistent 76
output inconsistent 76
merger diagram 75
merging 74
MIL standard 7,138
minimisation, chip 124
cost 124
minterm 13
mode, fundamental 56, 104, 121
model, general, asynchronous 54
synchronous 107
modification 125
modular system 125
Moore 62, 102
multilayer board 135
multiphase clock pulse generator
43
multiple input change 56, 121
multiple output 23
multiple path length 66
multiple sequence counter 41
multiple transition 64
multiway merger 76

NAND gate 8

next state, unspecified 78
noise margin 6
non-critical race 63
non-linear feedback 44

INDEX

non-volatile 32
NOR gate 8
number of states 55

operation time, minimisation 130
OR, exclusive 8, 10
OR gate 7
oscillation 64
output 55

multiple 23

spurious 44 .
output circuit 61, 75, 85
output consistent merger 76
output flip—flop 118
output function 55, 86
output gating 61
output inconsistent merger 76
output map 62
output signal 107

parallel 4
partition 18, 20, 69
path length, multiple 66
pattern, sequential 128
Paull 74,102
Peterson 24,28, 125, 131
Petrick 19, 28,77
phase design 111
phase linkage 114, 126
practical design 132
preclear 33
preset 33
primary assignment 99
prime implicant 16
essential 16
minimal set 17
redundant 66
primitive flow table 69
printed circuit 134
probability 130
propagation delay 63
propagation time 24
prototype 134
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pseudo-random sequence 44 sequence generation 44
pulse, clock 31, 104 sequence recognition 119
spurious 87 sequential sub-system 38
pulse generator, short 34 sequential system 29
pulse rate divider 48 asynchronous 54
pulse synchroniser 70 synchronous 104
sequential system design 47
serial 4
race 63,67, 80 set 33, 37,83
critical 63, 78, 105 asynchronous 37
extra state variable to avoid set/reset map 84
80, 98 Shemilt 135, 137
non-critical 63 shift register 42, 120
race-free assignment 78, 98 short pulse generator 34
random sequence 44 signal, action 107
read-only memory (ROM) 111 input 107
recirculating register 43 output 107
redundancy 50 state 107
redundant prime implicant 66 slave 35
redundant state 71, 123 sling 63
register, data 112 Sparkes 61, 103
recirculating 43 specification 69, 106, 132
shift 42 spurious count 39
reliability 124 spurious input 70
repair 125 spurious output 44
reset 33,37, 83,118 spurious pulse 87
reversible counter 41 stable state 57
ring counter 43 standard, MIL 7, 138
rise time, maximum 35 standard form 13
Ross 135,137 starting-up circuit 116
RS flip-flop 33, 36, 83,98 state, compatible 78
RS flipflop 37 equivalent 72,90, 122

internal 55
redundant 71, 123

sample 3 stable 57
schedule, test 136 total 55, 58
secondary assignment 99 unstable 57
secondary variable 54 state allocation 71
selector circuit, action 108 state assignment 78, 116, 124, 126,
self-correcting Johnson counter 44 130
sequence 43 race free 78,98
maximum length 44 state memory 108
pseudo-random 44 state signal 107
random 44 state table 121

unwanted 44 state transition, false 65
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flipflop 36

incompletely specified 121
state transition circuit 108, 116
state transition diagram 61, 119
state variable 30, 54

extra, to avoid race 80, 98

flip—flop storage of 55, 60

required number of 78
states, number of 55
static hazard 635, 85, 88
storage 29, 32
sub-system 38, 69
symbol, gate 7, 138

flip-flop 36

flow-chart 112
synchroniser, pulse 70
synchronous 31
synchronous counter 39, 50
synchronous reset 119
synchronous system 104, 107
synthesis, asynchronous system 68

synchronous system 116

table, implication 74, 123
state 121
truth 6

technology 133

test, automatic 136

test schedule 136

testing 105, 136

T flipflop 36

time, propagation 24

INDEX

timing 31

timing diagram 69, 70

total state 55, 58
transformation, logic circuit 8
transient 24

transition circuit, state 108, 116
transition diagram, state 61, 119
transition multiple 64

tree 131

trigger, edge 34, 35

trigger flipflop 36

truth table 6

twisted ring counter 43

two’s complement 3

unclocked flipflop 33
Unger 74,76,79, 102, 103
unpredictable behaviour 64
unspecified next state 78
unstable state 57

unwanted sequence 44
up/down counter 41

variable, binary 6
secondary 54
state 30, 54

volatile 32

waveform diagram 70
worst case 133



The coverage of this book is suitable for courses in logic design, combinational
logic, sequential logic and digital systems.

Chapter 1 introduces logic design and defines several concepts to be used later.
Chapter 2 is devoted to combinational logic design, the main aim being to
develop the Karnaugh map using a novel logical and reasonable process. Once
developed, the map is used for expression equivalence and simplification. In
addition, the authors show how circuit transformations can be carried out
directly by using an inverter growing process.

Chapter 3 introduces sequential design. Various types of flip-flop are analysed
and designed. The operation of shift registers with various feedback circuits is
also explored.

Worked and unworked examples are used in chapter 4 to present asynchronous
sequential logic design. The topics covered are stable and unstable states;
excitation and flow maps; input and output maps; static, dynamic and essential
hazards; equivalent state detection; merging; and state assignment.

Chapter 5 develops the theme of synchronous Io{qic design by means of the
flow chart, which allows the use of medium and large scale integrated circuits.
This technique allows quite complicated circuitry to be defined in a compact
manner and helps to reduce design and development costs.

The final chapter is devoted to practical design considerations. Based on the
authors’ own industrial experience, it deals with the complete design cycle,
from original specification to production testing. This chapter will be of
particular value to students working on a project that involves logic design.
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